
Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Randomized matrix decompositions
for faster scientific computing

Robert J. Webber1

1Computing + Mathematical Sciences, California Institute of Technology

January 12, 2024

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Processing data is slow.

Computers are producing
massive amounts of data.

Figure: Anton 3 supercomputer

MD performance

20

P
e

rf
o

rm
a

n
ce

 (s
im

u
la

te
d

 μ
s/

d
a

y)

log scale!

Simulation size (atoms)

>100× faster

Figure: Each day, Anton 3 simulates 106 atoms for 1011 time steps.

Question. Let’s say we want to analyze 104 molecules, how large is a 104 × 3 million array?

Answer. Storage ≈ 8× r rows× c columns/109 = 240GB.

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Processing data is slow.

Computers are producing
massive amounts of data.

Figure: Anton 3 supercomputer

MD performance

20

P
e

rf
o

rm
a

n
ce

 (s
im

u
la

te
d

 μ
s/

d
a

y)

log scale!

Simulation size (atoms)

>100× faster

Figure: Each day, Anton 3 simulates 106 atoms for 1011 time steps.

Question. Let’s say we want to analyze 104 molecules, how large is a 104 × 3 million array?

Answer. Storage ≈ 8× r rows× c columns/109 = 240GB.

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Processing data is slow.

Computers are producing
massive amounts of data.

Figure: Anton 3 supercomputer

MD performance

20

P
e

rf
o

rm
a

n
ce

 (s
im

u
la

te
d

 μ
s/

d
a

y)

log scale!

Simulation size (atoms)

>100× faster

Figure: Each day, Anton 3 simulates 106 atoms for 1011 time steps.

Question. Let’s say we want to analyze 104 molecules, how large is a 104 × 3 million array?

Answer. Storage ≈ 8× r rows× c columns/109 = 240GB.

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Processing data is slow.

A
P

 C
a
lcu
lu
s B

C
A
M
C

 1
2

C
o
d
e
fo
rce

s R
a
tin
g

A
P

 E
n
g
lish L

ite
ra
tu
re

A
M
C

 1
0

U
n
ifo
rm

 B
a
r E
xa
m

A
P

 E
n
g
lish L

a
n
g
u
a
g
e

A
P

 C
h
e
m
istry

G
R
E

 Q
u
a
n
tita
tive

A
P

 P
h
ysics 2

U
S
A
B
O

 S
e
m
ifin
a
l 2
0
2
0

A
P

 M
a
cro

e
co
n
o
m
ics

A
P

 S
ta
tistics

L
S
A
T

G
R
E

 W
ritin

g
A
P

 M
icro

e
co
n
o
m
ics

A
P

 B
io
lo
g
y

G
R
E

 V
e
rb
a
l

A
P

 W
o
rld H

isto
ry

S
A
T

 M
a
th

A
P

 U
S

 H
isto

ry
A
P

 U
S

 G
o
ve
rn
m
e
n
t

A
P

 P
sych

o
lo
g
y

A
P

 A
rt H

isto
ry

S
A
T

 E
B
R
W

A
P

 E
n
viro

n
m
e
n
ta
l S
cie
n
ceExam

0%

20%

40%

60%

80%

100%

Estimated percentile lower bound (among test takers)

Exam results (ordered by GPT-3.5 performance) gpt-4
gpt-4 (no vision)

gpt3.5

Figure: GPT-4 is a large language model with ≈ 1 trillion parameters

Question. How long does it
take to train GPT-4?

Answer. Training requires
25,000 GPUs working
constantly over 100 days.

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Processing data is slow.

A
P

 C
a
lcu
lu
s B

C
A
M
C

 1
2

C
o
d
e
fo
rce

s R
a
tin
g

A
P

 E
n
g
lish L

ite
ra
tu
re

A
M
C

 1
0

U
n
ifo
rm

 B
a
r E
xa
m

A
P

 E
n
g
lish L

a
n
g
u
a
g
e

A
P

 C
h
e
m
istry

G
R
E

 Q
u
a
n
tita
tive

A
P

 P
h
ysics 2

U
S
A
B
O

 S
e
m
ifin
a
l 2
0
2
0

A
P

 M
a
cro

e
co
n
o
m
ics

A
P

 S
ta
tistics

L
S
A
T

G
R
E

 W
ritin

g
A
P

 M
icro

e
co
n
o
m
ics

A
P

 B
io
lo
g
y

G
R
E

 V
e
rb
a
l

A
P

 W
o
rld H

isto
ry

S
A
T

 M
a
th

A
P

 U
S

 H
isto

ry
A
P

 U
S

 G
o
ve
rn
m
e
n
t

A
P

 P
sych

o
lo
g
y

A
P

 A
rt H

isto
ry

S
A
T

 E
B
R
W

A
P

 E
n
viro

n
m
e
n
ta
l S
cie
n
ceExam

0%

20%

40%

60%

80%

100%

Estimated percentile lower bound (among test takers)

Exam results (ordered by GPT-3.5 performance) gpt-4
gpt-4 (no vision)

gpt3.5

Figure: GPT-4 is a large language model with ≈ 1 trillion parameters

Question. How long does it
take to train GPT-4?

Answer. Training requires
25,000 GPUs working
constantly over 100 days.

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Processing data is slow.

A
P

 C
a
lcu
lu
s B

C
A
M
C

 1
2

C
o
d
e
fo
rce

s R
a
tin
g

A
P

 E
n
g
lish L

ite
ra
tu
re

A
M
C

 1
0

U
n
ifo
rm

 B
a
r E
xa
m

A
P

 E
n
g
lish L

a
n
g
u
a
g
e

A
P

 C
h
e
m
istry

G
R
E

 Q
u
a
n
tita
tive

A
P

 P
h
ysics 2

U
S
A
B
O

 S
e
m
ifin
a
l 2
0
2
0

A
P

 M
a
cro

e
co
n
o
m
ics

A
P

 S
ta
tistics

L
S
A
T

G
R
E

 W
ritin

g
A
P

 M
icro

e
co
n
o
m
ics

A
P

 B
io
lo
g
y

G
R
E

 V
e
rb
a
l

A
P

 W
o
rld H

isto
ry

S
A
T

 M
a
th

A
P

 U
S

 H
isto

ry
A
P

 U
S

 G
o
ve
rn
m
e
n
t

A
P

 P
sych

o
lo
g
y

A
P

 A
rt H

isto
ry

S
A
T

 E
B
R
W

A
P

 E
n
viro

n
m
e
n
ta
l S
cie
n
ceExam

0%

20%

40%

60%

80%

100%

Estimated percentile lower bound (among test takers)

Exam results (ordered by GPT-3.5 performance) gpt-4
gpt-4 (no vision)

gpt3.5

Figure: GPT-4 is a large language model with ≈ 1 trillion parameters

Question. How long does it
take to train GPT-4?

Answer. Training requires
25,000 GPUs working
constantly over 100 days.

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Processing data is slow.

Computers are producing massive amounts of data.

But processing data is difficult.

Computers are often solving linear systems and eigenvalue problems —
if we can accelerate these primitives, we can accelerate computation overall.

Randomized iterative methods lead to speed-ups for linear systems and eigenvalue problems.

Randomized iterative methods identify low-rank structure in large matrices.
• Find structure by repeatedly randomly searching.
• Low-rank structure leads to computational speed-ups.

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Processing data is slow.

Computers are producing massive amounts of data.

But processing data is difficult.

Computers are often solving linear systems and eigenvalue problems —
if we can accelerate these primitives, we can accelerate computation overall.

Randomized iterative methods lead to speed-ups for linear systems and eigenvalue problems.

Randomized iterative methods identify low-rank structure in large matrices.
• Find structure by repeatedly randomly searching.
• Low-rank structure leads to computational speed-ups.

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Processing data is slow.

Computers are producing massive amounts of data.

But processing data is difficult.

Computers are often solving linear systems and eigenvalue problems —
if we can accelerate these primitives, we can accelerate computation overall.

Randomized iterative methods lead to speed-ups for linear systems and eigenvalue problems.

Randomized iterative methods identify low-rank structure in large matrices.
• Find structure by repeatedly randomly searching.
• Low-rank structure leads to computational speed-ups.

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Processing data is slow.

Computers are producing massive amounts of data.

But processing data is difficult.

Computers are often solving linear systems and eigenvalue problems —
if we can accelerate these primitives, we can accelerate computation overall.

Randomized iterative methods lead to speed-ups for linear systems and eigenvalue problems.

Randomized iterative methods identify low-rank structure in large matrices.
• Find structure by repeatedly randomly searching.
• Low-rank structure leads to computational speed-ups.

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Processing data is slow.

Computers are producing massive amounts of data.

But processing data is difficult.

Computers are often solving linear systems and eigenvalue problems —
if we can accelerate these primitives, we can accelerate computation overall.

Randomized iterative methods lead to speed-ups for linear systems and eigenvalue problems.

Randomized iterative methods identify low-rank structure in large matrices.
• Find structure by repeatedly randomly searching.
• Low-rank structure leads to computational speed-ups.

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

How do we find dominant eigenvectors fast?

Consider three approaches to calculating the dominant eigenvectors of a matrix A ∈ RN×N ,
which is positive semidefinite (psd), i.e., symmetric with nonnegative eigenvalues.

Classical QR iteration. Gives a full eigendecomposition A = QΛQT in O(N3) operations.

Randomized block Krylov iteration. Gives an approximation of the top r eigenvectors and
eigenvalues in O(N2r) operations.

• RBKI is accurate even without eigenvalue decay (see Tropp & Webber, 2023).

Randomly pivoted Cholesky. Gives an approximation of the top r eigenvectors and
eigenvalues in O(Nr2) operations, using O(r) adaptively sampled columns.

• RPC is accurate given eigenvalue decay (Chen, Epperly, Tropp, & Webber, 2023).

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

How do we find dominant eigenvectors fast?

Consider three approaches to calculating the dominant eigenvectors of a matrix A ∈ RN×N ,
which is positive semidefinite (psd), i.e., symmetric with nonnegative eigenvalues.

Classical QR iteration. Gives a full eigendecomposition A = QΛQT in O(N3) operations.

Randomized block Krylov iteration. Gives an approximation of the top r eigenvectors and
eigenvalues in O(N2r) operations.

• RBKI is accurate even without eigenvalue decay (see Tropp & Webber, 2023).

Randomly pivoted Cholesky. Gives an approximation of the top r eigenvectors and
eigenvalues in O(Nr2) operations, using O(r) adaptively sampled columns.

• RPC is accurate given eigenvalue decay (Chen, Epperly, Tropp, & Webber, 2023).

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

How do we find dominant eigenvectors fast?

Consider three approaches to calculating the dominant eigenvectors of a matrix A ∈ RN×N ,
which is positive semidefinite (psd), i.e., symmetric with nonnegative eigenvalues.

Classical QR iteration. Gives a full eigendecomposition A = QΛQT in O(N3) operations.

Randomized block Krylov iteration. Gives an approximation of the top r eigenvectors and
eigenvalues in O(N2r) operations.

• RBKI is accurate even without eigenvalue decay (see Tropp & Webber, 2023).

Randomly pivoted Cholesky. Gives an approximation of the top r eigenvectors and
eigenvalues in O(Nr2) operations, using O(r) adaptively sampled columns.

• RPC is accurate given eigenvalue decay (Chen, Epperly, Tropp, & Webber, 2023).

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

How do we find dominant eigenvectors fast?

Consider three approaches to calculating the dominant eigenvectors of a matrix A ∈ RN×N ,
which is positive semidefinite (psd), i.e., symmetric with nonnegative eigenvalues.

Classical QR iteration. Gives a full eigendecomposition A = QΛQT in O(N3) operations.

Randomized block Krylov iteration. Gives an approximation of the top r eigenvectors and
eigenvalues in O(N2r) operations.

• RBKI is accurate even without eigenvalue decay (see Tropp & Webber, 2023).

Randomly pivoted Cholesky. Gives an approximation of the top r eigenvectors and
eigenvalues in O(Nr2) operations, using O(r) adaptively sampled columns.

• RPC is accurate given eigenvalue decay (Chen, Epperly, Tropp, & Webber, 2023).

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

How do we find dominant eigenvectors fast?

Consider three approaches to calculating the dominant eigenvectors of a matrix A ∈ RN×N ,
which is positive semidefinite (psd), i.e., symmetric with nonnegative eigenvalues.

Classical QR iteration. Gives a full eigendecomposition A = QΛQT in O(N3) operations.

Randomized block Krylov iteration. Gives an approximation of the top r eigenvectors and
eigenvalues in O(N2r) operations.

• RBKI is accurate even without eigenvalue decay (see Tropp & Webber, 2023).

Randomly pivoted Cholesky. Gives an approximation of the top r eigenvectors and
eigenvalues in O(Nr2) operations, using O(r) adaptively sampled columns.

• RPC is accurate given eigenvalue decay (Chen, Epperly, Tropp, & Webber, 2023).

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

How do we find dominant eigenvectors fast?

Consider three approaches to calculating the dominant eigenvectors of a matrix A ∈ RN×N ,
which is positive semidefinite (psd), i.e., symmetric with nonnegative eigenvalues.

Classical QR iteration. Gives a full eigendecomposition A = QΛQT in O(N3) operations.

Randomized block Krylov iteration. Gives an approximation of the top r eigenvectors and
eigenvalues in O(N2r) operations.

• RBKI is accurate even without eigenvalue decay (see Tropp & Webber, 2023).

Randomly pivoted Cholesky. Gives an approximation of the top r eigenvectors and
eigenvalues in O(Nr2) operations, using O(r) adaptively sampled columns.

• RPC is accurate given eigenvalue decay (Chen, Epperly, Tropp, & Webber, 2023).

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Low-rank approximation

The modern approach for calculating dominant eigenvectors of a positive semidefinite (psd)
matrix is based on low-rank approximation:

• Form approximation Â ≈ A where rank(Â)� rank(A).

• Dominant eigenvectors and eigenvalues of Â approximate dominant eigenvectors and
eigenvalues of A.

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Low-rank approximation

The modern approach for calculating dominant eigenvectors of a positive semidefinite (psd)
matrix is based on low-rank approximation:

• Form approximation Â ≈ A where rank(Â)� rank(A).

• Dominant eigenvectors and eigenvalues of Â approximate dominant eigenvectors and
eigenvalues of A.

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Low-rank approximation

The modern approach for calculating dominant eigenvectors of a positive semidefinite (psd)
matrix is based on low-rank approximation:

• Form approximation Â ≈ A where rank(Â)� rank(A).

• Dominant eigenvectors and eigenvalues of Â approximate dominant eigenvectors and
eigenvalues of A.

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Low-rank approximation

If A ∈ RN×N is psd, we use the Nyström approximation:

Â = AX (XTAX)† XTA

X ∈ RN×k is the test matrix, AX ∈ RN×k is the output matrix, T is the transpose, † is the
pseudoinverse.

1. All the columns in Â are linear combinations of the columns AX .

2. Â is an approximation from below in the sense of psd ordering, i.e., 0 � Â � A.

3. Â gives the minimum residual of any approximation satisfying 1–2.

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Low-rank approximation

If A ∈ RN×N is psd, we use the Nyström approximation:

Â = AX (XTAX)† XTA

X ∈ RN×k is the test matrix, AX ∈ RN×k is the output matrix, T is the transpose, † is the
pseudoinverse.

1. All the columns in Â are linear combinations of the columns AX .

2. Â is an approximation from below in the sense of psd ordering, i.e., 0 � Â � A.

3. Â gives the minimum residual of any approximation satisfying 1–2.

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Low-rank approximation

If A ∈ RN×N is psd, we use the Nyström approximation:

Â = AX (XTAX)† XTA

X ∈ RN×k is the test matrix, AX ∈ RN×k is the output matrix, T is the transpose, † is the
pseudoinverse.

1. All the columns in Â are linear combinations of the columns AX .

2. Â is an approximation from below in the sense of psd ordering, i.e., 0 � Â � A.

3. Â gives the minimum residual of any approximation satisfying 1–2.

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Low-rank approximation

If A ∈ RN×N is psd, we use the Nyström approximation:

Â = AX (XTAX)† XTA

X ∈ RN×k is the test matrix, AX ∈ RN×k is the output matrix, T is the transpose, † is the
pseudoinverse.

1. All the columns in Â are linear combinations of the columns AX .

2. Â is an approximation from below in the sense of psd ordering, i.e., 0 � Â � A.

3. Â gives the minimum residual of any approximation satisfying 1–2.

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Low-rank approximation

The optimal test matrix X for the
Nyström approximation

Â = AX
(
XTAX

)†XTA,

is any matrix whose columns span the
dominant eigenvectors.

We don’t know the dominant eigenvectors,
so high accuracy is obtained with the
randomized block Krylov matrix

X =
[
Ω AΩ · · · Am−1Ω

]
,

where Ω ∈ RN×k has independent
Gaussian entries ωij ∼ N (0, 1).

Question. Why do we take random Ω?

Answer. Gaussian vectors automatically find
low-rank structure when it exists.

* One Gaussian vector might miss the top
eigenvectors, but many Gaussian vectors
multiplied several times by A are exponentially
unlikely to miss the top eigenvectors.

* Single-vector Krylov with Ω =
[
ω1

]
is old, but

using many random vectors Ω =
[
ω1 · · · ωk

]
is modern.

* We offer an efficient implementation and
theoretical guarantees in Tropp & Webber, 2023.

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Low-rank approximation

The optimal test matrix X for the
Nyström approximation

Â = AX
(
XTAX

)†XTA,

is any matrix whose columns span the
dominant eigenvectors.

We don’t know the dominant eigenvectors,
so high accuracy is obtained with the
randomized block Krylov matrix

X =
[
Ω AΩ · · · Am−1Ω

]
,

where Ω ∈ RN×k has independent
Gaussian entries ωij ∼ N (0, 1).

Question. Why do we take random Ω?

Answer. Gaussian vectors automatically find
low-rank structure when it exists.

* One Gaussian vector might miss the top
eigenvectors, but many Gaussian vectors
multiplied several times by A are exponentially
unlikely to miss the top eigenvectors.

* Single-vector Krylov with Ω =
[
ω1

]
is old, but

using many random vectors Ω =
[
ω1 · · · ωk

]
is modern.

* We offer an efficient implementation and
theoretical guarantees in Tropp & Webber, 2023.

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Low-rank approximation

The optimal test matrix X for the
Nyström approximation

Â = AX
(
XTAX

)†XTA,

is any matrix whose columns span the
dominant eigenvectors.

We don’t know the dominant eigenvectors,
so high accuracy is obtained with the
randomized block Krylov matrix

X =
[
Ω AΩ · · · Am−1Ω

]
,

where Ω ∈ RN×k has independent
Gaussian entries ωij ∼ N (0, 1).

Question. Why do we take random Ω?

Answer. Gaussian vectors automatically find
low-rank structure when it exists.

* One Gaussian vector might miss the top
eigenvectors, but many Gaussian vectors
multiplied several times by A are exponentially
unlikely to miss the top eigenvectors.

* Single-vector Krylov with Ω =
[
ω1

]
is old, but

using many random vectors Ω =
[
ω1 · · · ωk

]
is modern.

* We offer an efficient implementation and
theoretical guarantees in Tropp & Webber, 2023.

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Low-rank approximation

The optimal test matrix X for the
Nyström approximation

Â = AX
(
XTAX

)†XTA,

is any matrix whose columns span the
dominant eigenvectors.

We don’t know the dominant eigenvectors,
so high accuracy is obtained with the
randomized block Krylov matrix

X =
[
Ω AΩ · · · Am−1Ω

]
,

where Ω ∈ RN×k has independent
Gaussian entries ωij ∼ N (0, 1).

Question. Why do we take random Ω?

Answer. Gaussian vectors automatically find
low-rank structure when it exists.

* One Gaussian vector might miss the top
eigenvectors, but many Gaussian vectors
multiplied several times by A are exponentially
unlikely to miss the top eigenvectors.

* Single-vector Krylov with Ω =
[
ω1

]
is old, but

using many random vectors Ω =
[
ω1 · · · ωk

]
is modern.

* We offer an efficient implementation and
theoretical guarantees in Tropp & Webber, 2023.

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Low-rank approximation

The optimal test matrix X for the
Nyström approximation

Â = AX
(
XTAX

)†XTA,

is any matrix whose columns span the
dominant eigenvectors.

We don’t know the dominant eigenvectors,
so high accuracy is obtained with the
randomized block Krylov matrix

X =
[
Ω AΩ · · · Am−1Ω

]
,

where Ω ∈ RN×k has independent
Gaussian entries ωij ∼ N (0, 1).

Question. Why do we take random Ω?

Answer. Gaussian vectors automatically find
low-rank structure when it exists.

* One Gaussian vector might miss the top
eigenvectors, but many Gaussian vectors
multiplied several times by A are exponentially
unlikely to miss the top eigenvectors.

* Single-vector Krylov with Ω =
[
ω1

]
is old, but

using many random vectors Ω =
[
ω1 · · · ωk

]
is modern.

* We offer an efficient implementation and
theoretical guarantees in Tropp & Webber, 2023.

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Low-rank approximation

The optimal test matrix X for the
Nyström approximation

Â = AX
(
XTAX

)†XTA,

is any matrix whose columns span the
dominant eigenvectors.

We don’t know the dominant eigenvectors,
so high accuracy is obtained with the
randomized block Krylov matrix

X =
[
Ω AΩ · · · Am−1Ω

]
,

where Ω ∈ RN×k has independent
Gaussian entries ωij ∼ N (0, 1).

Question. Why do we take random Ω?

Answer. Gaussian vectors automatically find
low-rank structure when it exists.

* One Gaussian vector might miss the top
eigenvectors, but many Gaussian vectors
multiplied several times by A are exponentially
unlikely to miss the top eigenvectors.

* Single-vector Krylov with Ω =
[
ω1

]
is old, but

using many random vectors Ω =
[
ω1 · · · ωk

]
is modern.

* We offer an efficient implementation and
theoretical guarantees in Tropp & Webber, 2023.

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Low-rank approximation

The optimal test matrix X for the
Nyström approximation

Â = AX
(
XTAX

)†XTA,

is any matrix whose columns span the
dominant eigenvectors.

We don’t know the dominant eigenvectors,
so high accuracy is obtained with the
randomized block Krylov matrix

X =
[
Ω AΩ · · · Am−1Ω

]
,

where Ω ∈ RN×k has independent
Gaussian entries ωij ∼ N (0, 1).

Question. Why do we take random Ω?

Answer. Gaussian vectors automatically find
low-rank structure when it exists.

* One Gaussian vector might miss the top
eigenvectors, but many Gaussian vectors
multiplied several times by A are exponentially
unlikely to miss the top eigenvectors.

* Single-vector Krylov with Ω =
[
ω1

]
is old, but

using many random vectors Ω =
[
ω1 · · · ωk

]
is modern.

* We offer an efficient implementation and
theoretical guarantees in Tropp & Webber, 2023.

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Description of RBKI

Randomized block Krylov iteration

(Tropp & Webber, 2023)

1. Generate random Gaussian Ω ∈ RN×k and set
Y 0 = Ω.

2. For i = 0, . . . ,m − 1:

a) Compute an orthonormal matrix Q i with

range
[
Q0 · · · Q i

]
= range

[
Y 0 · · · Y i

]
.

b) Set Y i+1 = AQ i .

3. Compute the Nyström approximation Â = FFT

using
[
Q0 · · · Qm−1

]
and

[
Y 1 · · · Ym

]
.

Numerically stable code

Generates the Nyström
approximation for
X =

[
Ω AΩ · · · Am−1Ω

]
.

2× faster than original RBKI
(Rokhlin, Szlam, & Tygert, 2010).

When A is large and dense, the
bottleneck is m multiplications with
A, requiring O(N2km) operations.

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Demonstration of RBKI

Example

Consider the following matrices

A = diag(1, e−0.1, . . . , e−9999.9)

B = A + diag(0.1, 0.099999, . . . , 0.000001).

The top eigenvalues are similar, but B has
slower eigenvalue decay than A.

100 101 102 103 104 105

Index i
0.00

0.25

0.50

0.75

1.00

Ei
ge

nv
al

ue

i

Fast decay
Slow decay

Figure: Eigenvalues decay fast or slow.

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Demonstration of RBKI

A =

1.000 0.000 0.000 0.000

0.000 0.905 0.000 0.000

0.000 0.000 0.819 0.000

0.000 0.000 0.000 0.741

. . .

 B =

1.100 0.000 0.000 0.000

0.000 1.005 0.000 0.000

0.000 0.000 0.919 0.000

0.000 0.000 0.000 0.841

. . .

RBKI with block size of k = 100 Gaussian vectors, depth of m = 1 multiplication =⇒

Â =

1.000 0.000 0.000 0.000

0.000 0.905 0.000 0.000

0.000 0.000 0.819 0.000

0.000 0.000 0.000 0.741

. . .

 B̂ =

0.024 −0.001 −0.001 −0.004

−0.001 0.016 −0.003 0.001

−0.001 −0.003 0.017 −0.001

−0.004 0.001 −0.001 0.015

. . .

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Demonstration of RBKI

A =

1.000 0.000 0.000 0.000

0.000 0.905 0.000 0.000

0.000 0.000 0.819 0.000

0.000 0.000 0.000 0.741

. . .

 B =

1.100 0.000 0.000 0.000

0.000 1.005 0.000 0.000

0.000 0.000 0.919 0.000

0.000 0.000 0.000 0.841

. . .

RBKI with block size of k = 100 Gaussian vectors, depth of m = 1 multiplication =⇒

Â =

1.000 0.000 0.000 0.000

0.000 0.905 0.000 0.000

0.000 0.000 0.819 0.000

0.000 0.000 0.000 0.741

. . .

 B̂ =

0.024 −0.001 −0.001 −0.004

−0.001 0.016 −0.003 0.001

−0.001 −0.003 0.017 −0.001

−0.004 0.001 −0.001 0.015

. . .

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Demonstration of RBKI

A =

1.000 0.000 0.000 0.000

0.000 0.905 0.000 0.000

0.000 0.000 0.819 0.000

0.000 0.000 0.000 0.741

. . .

 B =

1.100 0.000 0.000 0.000

0.000 1.005 0.000 0.000

0.000 0.000 0.919 0.000

0.000 0.000 0.000 0.841

. . .

RBKI with block size of k = 100 Gaussian vectors, depth of m = 2 multiplications =⇒

Â =

1.000 0.000 0.000 0.000

0.000 0.905 0.000 0.000

0.000 0.000 0.819 0.000

0.000 0.000 0.000 0.741

. . .

 B̂ =

1.072 −0.002 −0.002 −0.007

−0.002 0.960 −0.005 0.001

−0.002 −0.005 0.880 −0.001

−0.007 0.001 −0.002 0.796

. . .

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Demonstration of RBKI

A =

1.000 0.000 0.000 0.000

0.000 0.905 0.000 0.000

0.000 0.000 0.819 0.000

0.000 0.000 0.000 0.741

. . .

 B =

1.100 0.000 0.000 0.000

0.000 1.005 0.000 0.000

0.000 0.000 0.919 0.000

0.000 0.000 0.000 0.841

. . .

RBKI with block size of k = 100 Gaussian vectors, depth of m = 3 multiplications =⇒

Â =

1.000 0.000 0.000 0.000

0.000 0.905 0.000 0.000

0.000 0.000 0.819 0.000

0.000 0.000 0.000 0.741

. . .

 B̂ =

1.100 0.000 0.000 0.000

0.000 1.005 0.000 0.000

0.000 0.000 0.919 0.000

0.000 0.000 0.000 0.841

. . .

− With fast eigenvalue decay, just m = 1 matrix multiplication guarantees high accuracy.

− With slow eigenvalue decay, m = 3 matrix multiplications is enough.

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Demonstration of RBKI

A =

1.000 0.000 0.000 0.000

0.000 0.905 0.000 0.000

0.000 0.000 0.819 0.000

0.000 0.000 0.000 0.741

. . .

 B =

1.100 0.000 0.000 0.000

0.000 1.005 0.000 0.000

0.000 0.000 0.919 0.000

0.000 0.000 0.000 0.841

. . .

RBKI with block size of k = 100 Gaussian vectors, depth of m = 3 multiplications =⇒

Â =

1.000 0.000 0.000 0.000

0.000 0.905 0.000 0.000

0.000 0.000 0.819 0.000

0.000 0.000 0.000 0.741

. . .

 B̂ =

1.100 0.000 0.000 0.000

0.000 1.005 0.000 0.000

0.000 0.000 0.919 0.000

0.000 0.000 0.000 0.841

. . .

− With fast eigenvalue decay, just m = 1 matrix multiplication guarantees high accuracy.

− With slow eigenvalue decay, m = 3 matrix multiplications is enough.

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Practical runtime of RBKI

Question. Why is the small number of multiplications
m important?

Answer. RBKI runs fast with small m, even when the
block size k is large.

Matrix multiplications with large k are optimized with
multithreading, caching, and parallelization.

0 50 100 150 200
Minutes of runtime

10 7

10 5

10 3

10 1

Ei
ge

nv
ec

to
r e

rro
r

k = 1
k = 2
k = 5
k = 10
k = 100

∗ Traditional algorithms use k = 1
vector and many matrix
multiplications.

∗ RBKI uses fewer multiplications,
leading to 10× speed-ups over
np.linalg.sparse.eigsh in
Python and eigs in Matlab.

∗ I’m working with M Melnichenko
and R Murray to implement RBKI
in RandLAPACK, a randomized
software package faster than the
current standard LAPACK.

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Practical runtime of RBKI

Question. Why is the small number of multiplications
m important?

Answer. RBKI runs fast with small m, even when the
block size k is large.

Matrix multiplications with large k are optimized with
multithreading, caching, and parallelization.

0 50 100 150 200
Minutes of runtime

10 7

10 5

10 3

10 1

Ei
ge

nv
ec

to
r e

rro
r

k = 1
k = 2
k = 5
k = 10
k = 100

∗ Traditional algorithms use k = 1
vector and many matrix
multiplications.

∗ RBKI uses fewer multiplications,
leading to 10× speed-ups over
np.linalg.sparse.eigsh in
Python and eigs in Matlab.

∗ I’m working with M Melnichenko
and R Murray to implement RBKI
in RandLAPACK, a randomized
software package faster than the
current standard LAPACK.

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Practical runtime of RBKI

Question. Why is the small number of multiplications
m important?

Answer. RBKI runs fast with small m, even when the
block size k is large.

Matrix multiplications with large k are optimized with
multithreading, caching, and parallelization.

0 50 100 150 200
Minutes of runtime

10 7

10 5

10 3

10 1

Ei
ge

nv
ec

to
r e

rro
r

k = 1
k = 2
k = 5
k = 10
k = 100

∗ Traditional algorithms use k = 1
vector and many matrix
multiplications.

∗ RBKI uses fewer multiplications,
leading to 10× speed-ups over
np.linalg.sparse.eigsh in
Python and eigs in Matlab.

∗ I’m working with M Melnichenko
and R Murray to implement RBKI
in RandLAPACK, a randomized
software package faster than the
current standard LAPACK.

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Practical runtime of RBKI

Question. Why is the small number of multiplications
m important?

Answer. RBKI runs fast with small m, even when the
block size k is large.

Matrix multiplications with large k are optimized with
multithreading, caching, and parallelization.

0 50 100 150 200
Minutes of runtime

10 7

10 5

10 3

10 1

Ei
ge

nv
ec

to
r e

rro
r

k = 1
k = 2
k = 5
k = 10
k = 100

∗ Traditional algorithms use k = 1
vector and many matrix
multiplications.

∗ RBKI uses fewer multiplications,
leading to 10× speed-ups over
np.linalg.sparse.eigsh in
Python and eigs in Matlab.

∗ I’m working with M Melnichenko
and R Murray to implement RBKI
in RandLAPACK, a randomized
software package faster than the
current standard LAPACK.

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Practical runtime of RBKI

Question. Why is the small number of multiplications
m important?

Answer. RBKI runs fast with small m, even when the
block size k is large.

Matrix multiplications with large k are optimized with
multithreading, caching, and parallelization.

0 50 100 150 200
Minutes of runtime

10 7

10 5

10 3

10 1

Ei
ge

nv
ec

to
r e

rro
r

k = 1
k = 2
k = 5
k = 10
k = 100

∗ Traditional algorithms use k = 1
vector and many matrix
multiplications.

∗ RBKI uses fewer multiplications,
leading to 10× speed-ups over
np.linalg.sparse.eigsh in
Python and eigs in Matlab.

∗ I’m working with M Melnichenko
and R Murray to implement RBKI
in RandLAPACK, a randomized
software package faster than the
current standard LAPACK.

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Practical runtime of RBKI

Question. Why is the small number of multiplications
m important?

Answer. RBKI runs fast with small m, even when the
block size k is large.

Matrix multiplications with large k are optimized with
multithreading, caching, and parallelization.

0 50 100 150 200
Minutes of runtime

10 7

10 5

10 3

10 1

Ei
ge

nv
ec

to
r e

rro
r

k = 1
k = 2
k = 5
k = 10
k = 100

∗ Traditional algorithms use k = 1
vector and many matrix
multiplications.

∗ RBKI uses fewer multiplications,
leading to 10× speed-ups over
np.linalg.sparse.eigsh in
Python and eigs in Matlab.

∗ I’m working with M Melnichenko
and R Murray to implement RBKI
in RandLAPACK, a randomized
software package faster than the
current standard LAPACK.

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Theoretical properties of RBKI

For any psd matrix A ∈ RN×N , let bAcr be the best
rank-r approximation, which comes from an
r -truncated eigendecomposition of A.

RBKI guarantees for psd matrices
(Tropp & Webber, 2023)

For each block size k ≥ 2r + 1 and number of
multiplications m ≥ 2,

E‖A− Â‖ ≤ exp

([
log(4N + 4)

4m − 6

]2)
‖A− bAcr‖.

Proof uses “almost convexity” of Chebyshev
polynomials and properties of Gaussian matrices (5
bonus slides).

∗ After just m = 1
4 log(N + 1) + 2

multiplications, RBKI guarantees
E‖A− Â‖ ≤ 2‖A− bAcr‖.

∗ These are the first bounds that
explicitly quantify how small we can
take m.

∗ They are universal bounds that hold
for any psd matrix A.

∗ We have also extended RBKI to
compute a low–rank approximation
for any rectangular matrix
A ∈ RM×N .

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Theoretical properties of RBKI

For any psd matrix A ∈ RN×N , let bAcr be the best
rank-r approximation, which comes from an
r -truncated eigendecomposition of A.

RBKI guarantees for psd matrices
(Tropp & Webber, 2023)

For each block size k ≥ 2r + 1 and number of
multiplications m ≥ 2,

E‖A− Â‖ ≤ exp

([
log(4N + 4)

4m − 6

]2)
‖A− bAcr‖.

Proof uses “almost convexity” of Chebyshev
polynomials and properties of Gaussian matrices (5
bonus slides).

∗ After just m = 1
4 log(N + 1) + 2

multiplications, RBKI guarantees
E‖A− Â‖ ≤ 2‖A− bAcr‖.

∗ These are the first bounds that
explicitly quantify how small we can
take m.

∗ They are universal bounds that hold
for any psd matrix A.

∗ We have also extended RBKI to
compute a low–rank approximation
for any rectangular matrix
A ∈ RM×N .

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Theoretical properties of RBKI

For any psd matrix A ∈ RN×N , let bAcr be the best
rank-r approximation, which comes from an
r -truncated eigendecomposition of A.

RBKI guarantees for psd matrices
(Tropp & Webber, 2023)

For each block size k ≥ 2r + 1 and number of
multiplications m ≥ 2,

E‖A− Â‖ ≤ exp

([
log(4N + 4)

4m − 6

]2)
‖A− bAcr‖.

Proof uses “almost convexity” of Chebyshev
polynomials and properties of Gaussian matrices (5
bonus slides).

∗ After just m = 1
4 log(N + 1) + 2

multiplications, RBKI guarantees
E‖A− Â‖ ≤ 2‖A− bAcr‖.

∗ These are the first bounds that
explicitly quantify how small we can
take m.

∗ They are universal bounds that hold
for any psd matrix A.

∗ We have also extended RBKI to
compute a low–rank approximation
for any rectangular matrix
A ∈ RM×N .

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Theoretical properties of RBKI

For any psd matrix A ∈ RN×N , let bAcr be the best
rank-r approximation, which comes from an
r -truncated eigendecomposition of A.

RBKI guarantees for psd matrices
(Tropp & Webber, 2023)

For each block size k ≥ 2r + 1 and number of
multiplications m ≥ 2,

E‖A− Â‖ ≤ exp

([
log(4N + 4)

4m − 6

]2)
‖A− bAcr‖.

Proof uses “almost convexity” of Chebyshev
polynomials and properties of Gaussian matrices (5
bonus slides).

∗ After just m = 1
4 log(N + 1) + 2

multiplications, RBKI guarantees
E‖A− Â‖ ≤ 2‖A− bAcr‖.

∗ These are the first bounds that
explicitly quantify how small we can
take m.

∗ They are universal bounds that hold
for any psd matrix A.

∗ We have also extended RBKI to
compute a low–rank approximation
for any rectangular matrix
A ∈ RM×N .

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Theoretical properties of RBKI

For any psd matrix A ∈ RN×N , let bAcr be the best
rank-r approximation, which comes from an
r -truncated eigendecomposition of A.

RBKI guarantees for psd matrices
(Tropp & Webber, 2023)

For each block size k ≥ 2r + 1 and number of
multiplications m ≥ 2,

E‖A− Â‖ ≤ exp

([
log(4N + 4)

4m − 6

]2)
‖A− bAcr‖.

Proof uses “almost convexity” of Chebyshev
polynomials and properties of Gaussian matrices (5
bonus slides).

∗ After just m = 1
4 log(N + 1) + 2

multiplications, RBKI guarantees
E‖A− Â‖ ≤ 2‖A− bAcr‖.

∗ These are the first bounds that
explicitly quantify how small we can
take m.

∗ They are universal bounds that hold
for any psd matrix A.

∗ We have also extended RBKI to
compute a low–rank approximation
for any rectangular matrix
A ∈ RM×N .

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Theoretical properties of RBKI

For any psd matrix A ∈ RN×N , let bAcr be the best
rank-r approximation, which comes from an
r -truncated eigendecomposition of A.

RBKI guarantees for psd matrices
(Tropp & Webber, 2023)

For each block size k ≥ 2r + 1 and number of
multiplications m ≥ 2,

E‖A− Â‖ ≤ exp

([
log(4N + 4)

4m − 6

]2)
‖A− bAcr‖.

Proof uses “almost convexity” of Chebyshev
polynomials and properties of Gaussian matrices (5
bonus slides).

∗ After just m = 1
4 log(N + 1) + 2

multiplications, RBKI guarantees
E‖A− Â‖ ≤ 2‖A− bAcr‖.

∗ These are the first bounds that
explicitly quantify how small we can
take m.

∗ They are universal bounds that hold
for any psd matrix A.

∗ We have also extended RBKI to
compute a low–rank approximation
for any rectangular matrix
A ∈ RM×N .

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Application in genetics

Genetics data sets are large (≥ 104 single-nucleotide polymorphisms) and noisy:

“In large datasets, eigenvalues may be highly significant (reflecting real population
structure in the data) but only slightly larger than background noise eigenvalues.”

RBKI filters out the noise components, while accurately approximating the signal components.

0 2 4 6 8 10
Multiplications m

10 3

10 2

10 1

100

Ei
ge

nv
ec

to
r e

rro
r

2 1 0 1 2
PC 1

2

1

0

1

2

PC
 2

Ancestry
Africa
Europe/Mexico
India
East Asia

Figure: After m = 4 multiplications (left), RBKI reproduces the ideal clustering (right).

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Application in genetics

Genetics data sets are large (≥ 104 single-nucleotide polymorphisms) and noisy:

“In large datasets, eigenvalues may be highly significant (reflecting real population
structure in the data) but only slightly larger than background noise eigenvalues.”

RBKI filters out the noise components, while accurately approximating the signal components.

0 2 4 6 8 10
Multiplications m

10 3

10 2

10 1

100

Ei
ge

nv
ec

to
r e

rro
r

2 1 0 1 2
PC 1

2

1

0

1

2

PC
 2

Ancestry
Africa
Europe/Mexico
India
East Asia

Figure: After m = 4 multiplications (left), RBKI reproduces the ideal clustering (right).

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Application in genetics

Genetics data sets are large (≥ 104 single-nucleotide polymorphisms) and noisy:

“In large datasets, eigenvalues may be highly significant (reflecting real population
structure in the data) but only slightly larger than background noise eigenvalues.”

RBKI filters out the noise components, while accurately approximating the signal components.

0 2 4 6 8 10
Multiplications m

10 3

10 2

10 1

100

Ei
ge

nv
ec

to
r e

rro
r

2 1 0 1 2
PC 1

2

1

0

1

2

PC
 2

Ancestry
Africa
Europe/Mexico
India
East Asia

Figure: After m = 4 multiplications (left), RBKI reproduces the ideal clustering (right).

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Column Nyström approximation

Often, the most efficient approximation of psd A ∈ RN×N is the column Nyström
approximation:

Â = A(·,S) A(S,S)† A(S, ·)

S = {s1, . . . , sk} is a set of k column indices, † is the pseudoinverse.

1. Â is a specialization of the Nyström decomposition.

2. Â perfectly recovers the selected columns A(·,S).

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Column Nyström approximation

Often, the most efficient approximation of psd A ∈ RN×N is the column Nyström
approximation:

Â = A(·,S) A(S,S)† A(S, ·)

S = {s1, . . . , sk} is a set of k column indices, † is the pseudoinverse.

1. Â is a specialization of the Nyström decomposition.

2. Â perfectly recovers the selected columns A(·,S).

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Column Nyström approximation

Often, the most efficient approximation of psd A ∈ RN×N is the column Nyström
approximation:

Â = A(·,S) A(S,S)† A(S, ·)

S = {s1, . . . , sk} is a set of k column indices, † is the pseudoinverse.

1. Â is a specialization of the Nyström decomposition.

2. Â perfectly recovers the selected columns A(·,S).

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Column Nyström approximation

Often, the most efficient approximation of psd A ∈ RN×N is the column Nyström
approximation:

Â = A(·,S) A(S,S)† A(S, ·)

S = {s1, . . . , sk} is a set of k column indices, † is the pseudoinverse.

1. Â is a specialization of the Nyström decomposition.

2. Â perfectly recovers the selected columns A(·,S).

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Partial Cholesky approximation

The partial Cholesky decomposition generates the column Nyström approximation:

Partial Cholesky decomposition

1. Initialize F = 0N×k .

2. For i = 1, . . . , k :

a) Select a column index si ∈ {1, . . . ,N}.
b) Evaluate the si column of the target matrix g = A(·, si).
c) Subtract the si column of the current Nyström approximation g = g − (FFT)(·, si).
d) Rescale the column F (·, i) = g/

√
g(si).

3. Return the Nyström approximation Â = FFT .

This is like the standard Cholesky decomposition, but stop after k steps.

Only requires evaluating the k selected columns and taking linear combinations, hence
O(Nk) memory and O(Nk2) operations.

Let’s apply partial Cholesky to an example and consider the best column indices s1, . . . , sk .

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Partial Cholesky approximation

The partial Cholesky decomposition generates the column Nyström approximation:

Partial Cholesky decomposition

1. Initialize F = 0N×k .

2. For i = 1, . . . , k :

a) Select a column index si ∈ {1, . . . ,N}.
b) Evaluate the si column of the target matrix g = A(·, si).
c) Subtract the si column of the current Nyström approximation g = g − (FFT)(·, si).
d) Rescale the column F (·, i) = g/

√
g(si).

3. Return the Nyström approximation Â = FFT .

This is like the standard Cholesky decomposition, but stop after k steps.

Only requires evaluating the k selected columns and taking linear combinations, hence
O(Nk) memory and O(Nk2) operations.

Let’s apply partial Cholesky to an example and consider the best column indices s1, . . . , sk .

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Partial Cholesky approximation

The partial Cholesky decomposition generates the column Nyström approximation:

Partial Cholesky decomposition

1. Initialize F = 0N×k .

2. For i = 1, . . . , k :

a) Select a column index si ∈ {1, . . . ,N}.
b) Evaluate the si column of the target matrix g = A(·, si).
c) Subtract the si column of the current Nyström approximation g = g − (FFT)(·, si).
d) Rescale the column F (·, i) = g/

√
g(si).

3. Return the Nyström approximation Â = FFT .

This is like the standard Cholesky decomposition, but stop after k steps.

Only requires evaluating the k selected columns and taking linear combinations, hence
O(Nk) memory and O(Nk2) operations.

Let’s apply partial Cholesky to an example and consider the best column indices s1, . . . , sk .

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Partial Cholesky approximation

The partial Cholesky decomposition generates the column Nyström approximation:

Partial Cholesky decomposition

1. Initialize F = 0N×k .

2. For i = 1, . . . , k :

a) Select a column index si ∈ {1, . . . ,N}.
b) Evaluate the si column of the target matrix g = A(·, si).
c) Subtract the si column of the current Nyström approximation g = g − (FFT)(·, si).
d) Rescale the column F (·, i) = g/

√
g(si).

3. Return the Nyström approximation Â = FFT .

This is like the standard Cholesky decomposition, but stop after k steps.

Only requires evaluating the k selected columns and taking linear combinations, hence
O(Nk) memory and O(Nk2) operations.

Let’s apply partial Cholesky to an example and consider the best column indices s1, . . . , sk .

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Example of partial Cholesky decomposition

Example. For data points x1, . . . , x6, define A ∈ R6×6 with entries aij = exp
(
− 1

2‖x i − x j‖2
)
.

Figure: Two clusters of data points

x1 x2 x3 x4 x5 x6

−1.34 −1.28 −0.73 0.10 1.04 1.09
1.52 1.02 1.51 −0.69 −0.84 −1.24

A =

1.00 0.88 0.83 0.03 0.00 0.00
0.88 1.00 0.76 0.09 0.01 0.00
0.83 0.76 1.00 0.06 0.01 0.00
0.03 0.09 0.06 1.00 0.64 0.53
0.00 0.01 0.01 0.64 1.00 0.92
0.00 0.00 0.00 0.53 0.92 1.00

Column A(·, i) measures the similarity of x i to the other data
points.

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Example of partial Cholesky decomposition

Example. Let’s apply the partial Cholesky decomposition and track the diagonal of the
residual.

A(0) =

1.00 0.88 0.83 0.03 0.00 0.00
0.88 1.00 0.76 0.09 0.01 0.00
0.83 0.76 1.00 0.06 0.01 0.00
0.03 0.09 0.06 1.00 0.64 0.53
0.00 0.01 0.01 0.64 1.00 0.92
0.00 0.00 0.00 0.53 0.92 1.00

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Example of partial Cholesky decomposition

Â
(1)

=

0.88
1.00
0.76
0.09
0.01
0.00

[
1.00

]−1

0.88
1.00
0.76
0.09
0.01
0.00

T

.

A(1) =

0.22 0.15 −0.05 −0.01 0.00

0.15 0.41 0.00 0.00 0.00
−0.05 0.00 0.99 0.64 0.53
−0.01 0.00 0.64 1.00 0.92

0.00 0.00 0.53 0.92 1.00

 .

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Example of partial Cholesky decomposition

Â
(2)

=

0.88 −0.05
1.00 0.00
0.76 0.00
0.09 0.99
0.01 0.64
0.00 0.53

[

1.00
0.99

]−1

0.88 −0.05
1.00 0.00
0.76 0.00
0.09 0.99
0.01 0.64
0.00 0.53

T

A(2) =

0.22 0.15 0.02 0.02

0.15 0.41 0.01 0.00

0.02 0.01 0.59 0.58
0.02 0.00 0.58 0.72

 .

Just two columns typically give an approximation with a small residual.

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Example of partial Cholesky decomposition

Â
(2)

=

0.88 −0.05
1.00 0.00
0.76 0.00
0.09 0.99
0.01 0.64
0.00 0.53

[

1.00
0.99

]−1

0.88 −0.05
1.00 0.00
0.76 0.00
0.09 0.99
0.01 0.64
0.00 0.53

T

A(2) =

0.22 0.15 0.02 0.02

0.15 0.41 0.01 0.00

0.02 0.01 0.59 0.58
0.02 0.00 0.58 0.72

 .

Just two columns typically give an approximation with a small residual.

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Choosing the column indices

Question. How can we choose the best
column indices?

Answer. For any psd matrix, the diagonal
entries are important.

− The diagonal entries are nonnegative,
and they bound the off-diagonal
entries according to

|aij | ≤
√
aiiajj .

− Each large diagonal entry aii shows
that column i might contain
large-magnitude elements — we want
to include large-magnitude elements
in our approximation.

Follow-up question. How do we use the large
diagonal elements?

* In the greedy method, we select each column
according to the largest diagonal element in the
residual:

si ∈ argmaxj
(
A(i−1))

jj
.

* This leads to bad performance — the greedy
method is easily fooled by outlier columns.

* We could ignore the diagonal and sample
uniformly at random

si ∼ Unif{1, . . . ,N}.

* Uniform sampling leads to bad performance —
the method focuses on the “typical” columns but
ignores atypical clusters.

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Choosing the column indices

Question. How can we choose the best
column indices?

Answer. For any psd matrix, the diagonal
entries are important.

− The diagonal entries are nonnegative,
and they bound the off-diagonal
entries according to

|aij | ≤
√
aiiajj .

− Each large diagonal entry aii shows
that column i might contain
large-magnitude elements — we want
to include large-magnitude elements
in our approximation.

Follow-up question. How do we use the large
diagonal elements?

* In the greedy method, we select each column
according to the largest diagonal element in the
residual:

si ∈ argmaxj
(
A(i−1))

jj
.

* This leads to bad performance — the greedy
method is easily fooled by outlier columns.

* We could ignore the diagonal and sample
uniformly at random

si ∼ Unif{1, . . . ,N}.

* Uniform sampling leads to bad performance —
the method focuses on the “typical” columns but
ignores atypical clusters.

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Choosing the column indices

Question. How can we choose the best
column indices?

Answer. For any psd matrix, the diagonal
entries are important.

− The diagonal entries are nonnegative,
and they bound the off-diagonal
entries according to

|aij | ≤
√
aiiajj .

− Each large diagonal entry aii shows
that column i might contain
large-magnitude elements — we want
to include large-magnitude elements
in our approximation.

Follow-up question. How do we use the large
diagonal elements?

* In the greedy method, we select each column
according to the largest diagonal element in the
residual:

si ∈ argmaxj
(
A(i−1))

jj
.

* This leads to bad performance — the greedy
method is easily fooled by outlier columns.

* We could ignore the diagonal and sample
uniformly at random

si ∼ Unif{1, . . . ,N}.

* Uniform sampling leads to bad performance —
the method focuses on the “typical” columns but
ignores atypical clusters.

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Choosing the column indices

Question. How can we choose the best
column indices?

Answer. For any psd matrix, the diagonal
entries are important.

− The diagonal entries are nonnegative,
and they bound the off-diagonal
entries according to

|aij | ≤
√
aiiajj .

− Each large diagonal entry aii shows
that column i might contain
large-magnitude elements — we want
to include large-magnitude elements
in our approximation.

Follow-up question. How do we use the large
diagonal elements?

* In the greedy method, we select each column
according to the largest diagonal element in the
residual:

si ∈ argmaxj
(
A(i−1))

jj
.

* This leads to bad performance — the greedy
method is easily fooled by outlier columns.

* We could ignore the diagonal and sample
uniformly at random

si ∼ Unif{1, . . . ,N}.

* Uniform sampling leads to bad performance —
the method focuses on the “typical” columns but
ignores atypical clusters.

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Choosing the column indices

Question. How can we choose the best
column indices?

Answer. For any psd matrix, the diagonal
entries are important.

− The diagonal entries are nonnegative,
and they bound the off-diagonal
entries according to

|aij | ≤
√
aiiajj .

− Each large diagonal entry aii shows
that column i might contain
large-magnitude elements — we want
to include large-magnitude elements
in our approximation.

Follow-up question. How do we use the large
diagonal elements?

* In the greedy method, we select each column
according to the largest diagonal element in the
residual:

si ∈ argmaxj
(
A(i−1))

jj
.

* This leads to bad performance — the greedy
method is easily fooled by outlier columns.

* We could ignore the diagonal and sample
uniformly at random

si ∼ Unif{1, . . . ,N}.

* Uniform sampling leads to bad performance —
the method focuses on the “typical” columns but
ignores atypical clusters.

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Choosing the column indices

Question. How can we choose the best
column indices?

Answer. For any psd matrix, the diagonal
entries are important.

− The diagonal entries are nonnegative,
and they bound the off-diagonal
entries according to

|aij | ≤
√
aiiajj .

− Each large diagonal entry aii shows
that column i might contain
large-magnitude elements — we want
to include large-magnitude elements
in our approximation.

Follow-up question. How do we use the large
diagonal elements?

* In the greedy method, we select each column
according to the largest diagonal element in the
residual:

si ∈ argmaxj
(
A(i−1))

jj
.

* This leads to bad performance — the greedy
method is easily fooled by outlier columns.

* We could ignore the diagonal and sample
uniformly at random

si ∼ Unif{1, . . . ,N}.

* Uniform sampling leads to bad performance —
the method focuses on the “typical” columns but
ignores atypical clusters.

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Choosing the column indices

Question. How can we choose the best
column indices?

Answer. For any psd matrix, the diagonal
entries are important.

− The diagonal entries are nonnegative,
and they bound the off-diagonal
entries according to

|aij | ≤
√
aiiajj .

− Each large diagonal entry aii shows
that column i might contain
large-magnitude elements — we want
to include large-magnitude elements
in our approximation.

Follow-up question. How do we use the large
diagonal elements?

* In the greedy method, we select each column
according to the largest diagonal element in the
residual:

si ∈ argmaxj
(
A(i−1))

jj
.

* This leads to bad performance — the greedy
method is easily fooled by outlier columns.

* We could ignore the diagonal and sample
uniformly at random

si ∼ Unif{1, . . . ,N}.

* Uniform sampling leads to bad performance —
the method focuses on the “typical” columns but
ignores atypical clusters.

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Choosing the column indices

Question. How can we choose the best
column indices?

Answer. For any psd matrix, the diagonal
entries are important.

− The diagonal entries are nonnegative,
and they bound the off-diagonal
entries according to

|aij | ≤
√
aiiajj .

− Each large diagonal entry aii shows
that column i might contain
large-magnitude elements — we want
to include large-magnitude elements
in our approximation.

Follow-up question. How do we use the large
diagonal elements?

* In the greedy method, we select each column
according to the largest diagonal element in the
residual:

si ∈ argmaxj
(
A(i−1))

jj
.

* This leads to bad performance — the greedy
method is easily fooled by outlier columns.

* We could ignore the diagonal and sample
uniformly at random

si ∼ Unif{1, . . . ,N}.

* Uniform sampling leads to bad performance —
the method focuses on the “typical” columns but
ignores atypical clusters.

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Choosing the column indices

Question. How can we choose the best
column indices?

Answer. For any psd matrix, the diagonal
entries are important.

− The diagonal entries are nonnegative,
and they bound the off-diagonal
entries according to

|aij | ≤
√
aiiajj .

− Each large diagonal entry aii shows
that column i might contain
large-magnitude elements — we want
to include large-magnitude elements
in our approximation.

Follow-up question. How do we use the large
diagonal elements?

* In the greedy method, we select each column
according to the largest diagonal element in the
residual:

si ∈ argmaxj
(
A(i−1))

jj
.

* This leads to bad performance — the greedy
method is easily fooled by outlier columns.

* We could ignore the diagonal and sample
uniformly at random

si ∼ Unif{1, . . . ,N}.

* Uniform sampling leads to bad performance —
the method focuses on the “typical” columns but
ignores atypical clusters.

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Description of Randomly pivoted Cholesky

New method. Randomly pivoted Cholesky randomly chooses a column index according to
the diagonal elements of the residual:

P{si = j} =

(
A(i−1))

jj

trA(i−1) , j = 1, 2, . . . ,N.

Randomly pivoted Cholesky (Chen, Epperly, Tropp, & Webber, 2022)

1. Initialize F = 0N×k .

2. Initialize the diagonal of the residual d = diag(A).

3. For i = 1, . . . , k:

a) Sample a column index si ∼ d/
∑N

i=1 d (i).
b) Evaluate the si column of the target matrix g = A(·, si).
c) Subtract the si column of the current approximation g = g − (FFT)(·, si).
d) Rescale the column F (·, i) = g/

√
g(si).

e) Update the diagonal of the residual matrix d = d − |F (·, i)|2.

4. Return the approximation Â = FFT .

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Description of Randomly pivoted Cholesky

New method. Randomly pivoted Cholesky randomly chooses a column index according to
the diagonal elements of the residual:

P{si = j} =

(
A(i−1))

jj

trA(i−1) , j = 1, 2, . . . ,N.

Randomly pivoted Cholesky (Chen, Epperly, Tropp, & Webber, 2022)

1. Initialize F = 0N×k .

2. Initialize the diagonal of the residual d = diag(A).

3. For i = 1, . . . , k :

a) Sample a column index si ∼ d/
∑N

i=1 d (i).
b) Evaluate the si column of the target matrix g = A(·, si).
c) Subtract the si column of the current approximation g = g − (FFT)(·, si).
d) Rescale the column F (·, i) = g/

√
g(si).

e) Update the diagonal of the residual matrix d = d − |F (·, i)|2.

4. Return the approximation Â = FFT .

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Performance of RPCholesky

In comparisons, RPCholesky outperforms uniform sampling and greedy sampling.

Uniform

Greedy

RPCholesky

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Performance of RPCholesky

In comparisons, RPCholesky outperforms uniform sampling and greedy sampling.

Uniform

Greedy

RPCholesky

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Theoretical properties of RPCholesky

For any psd matrix A ∈ RN×N , let bAcr be the best
rank-r approximation, which comes from an r -truncated
eigendecomposition of A.

Math question. How many columns k are needed to
guarantee an (r , ε)-approximation

E tr(A− Â) ≤
(
1 + ε

)
tr(A− bAcr)

for every N × N input matrix?

RPCholesky error bound
(Chen, Epperly, Tropp & Webber, 2022)

RPCholesky guarantees an (r , ε)-approximation for

k ≥ r

ε
+ r log

(1

ε
· trA

tr(A− bAcr)

)
.

∗ When eigenvalues decay fast,
tr(A− bAcr) is small so the error
E tr(A− Â) must be small.

∗ Since the log factor is small,
RPCholesky requires a small
multiple (≤ 10) of r/ε columns.

∗ The bounds are near-optimal —
there is a psd matrix that cannot
be approximated in fewer than
r/ε columns.

∗ Proof uses matrix monotonicity,
matrix concavity, and dynamical
systems (5 bonus slides).

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Theoretical properties of RPCholesky

For any psd matrix A ∈ RN×N , let bAcr be the best
rank-r approximation, which comes from an r -truncated
eigendecomposition of A.

Math question. How many columns k are needed to
guarantee an (r , ε)-approximation

E tr(A− Â) ≤
(
1 + ε

)
tr(A− bAcr)

for every N × N input matrix?

RPCholesky error bound
(Chen, Epperly, Tropp & Webber, 2022)

RPCholesky guarantees an (r , ε)-approximation for

k ≥ r

ε
+ r log

(1

ε
· trA

tr(A− bAcr)

)
.

∗ When eigenvalues decay fast,
tr(A− bAcr) is small so the error
E tr(A− Â) must be small.

∗ Since the log factor is small,
RPCholesky requires a small
multiple (≤ 10) of r/ε columns.

∗ The bounds are near-optimal —
there is a psd matrix that cannot
be approximated in fewer than
r/ε columns.

∗ Proof uses matrix monotonicity,
matrix concavity, and dynamical
systems (5 bonus slides).

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Theoretical properties of RPCholesky

For any psd matrix A ∈ RN×N , let bAcr be the best
rank-r approximation, which comes from an r -truncated
eigendecomposition of A.

Math question. How many columns k are needed to
guarantee an (r , ε)-approximation

E tr(A− Â) ≤
(
1 + ε

)
tr(A− bAcr)

for every N × N input matrix?

RPCholesky error bound
(Chen, Epperly, Tropp & Webber, 2022)

RPCholesky guarantees an (r , ε)-approximation for

k ≥ r

ε
+ r log

(1

ε
· trA

tr(A− bAcr)

)
.

∗ When eigenvalues decay fast,
tr(A− bAcr) is small so the error
E tr(A− Â) must be small.

∗ Since the log factor is small,
RPCholesky requires a small
multiple (≤ 10) of r/ε columns.

∗ The bounds are near-optimal —
there is a psd matrix that cannot
be approximated in fewer than
r/ε columns.

∗ Proof uses matrix monotonicity,
matrix concavity, and dynamical
systems (5 bonus slides).

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Theoretical properties of RPCholesky

For any psd matrix A ∈ RN×N , let bAcr be the best
rank-r approximation, which comes from an r -truncated
eigendecomposition of A.

Math question. How many columns k are needed to
guarantee an (r , ε)-approximation

E tr(A− Â) ≤
(
1 + ε

)
tr(A− bAcr)

for every N × N input matrix?

RPCholesky error bound
(Chen, Epperly, Tropp & Webber, 2022)

RPCholesky guarantees an (r , ε)-approximation for

k ≥ r

ε
+ r log

(1

ε
· trA

tr(A− bAcr)

)
.

∗ When eigenvalues decay fast,
tr(A− bAcr) is small so the error
E tr(A− Â) must be small.

∗ Since the log factor is small,
RPCholesky requires a small
multiple (≤ 10) of r/ε columns.

∗ The bounds are near-optimal —
there is a psd matrix that cannot
be approximated in fewer than
r/ε columns.

∗ Proof uses matrix monotonicity,
matrix concavity, and dynamical
systems (5 bonus slides).

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Theoretical properties of RPCholesky

For any psd matrix A ∈ RN×N , let bAcr be the best
rank-r approximation, which comes from an r -truncated
eigendecomposition of A.

Math question. How many columns k are needed to
guarantee an (r , ε)-approximation

E tr(A− Â) ≤
(
1 + ε

)
tr(A− bAcr)

for every N × N input matrix?

RPCholesky error bound
(Chen, Epperly, Tropp & Webber, 2022)

RPCholesky guarantees an (r , ε)-approximation for

k ≥ r

ε
+ r log

(1

ε
· trA

tr(A− bAcr)

)
.

∗ When eigenvalues decay fast,
tr(A− bAcr) is small so the error
E tr(A− Â) must be small.

∗ Since the log factor is small,
RPCholesky requires a small
multiple (≤ 10) of r/ε columns.

∗ The bounds are near-optimal —
there is a psd matrix that cannot
be approximated in fewer than
r/ε columns.

∗ Proof uses matrix monotonicity,
matrix concavity, and dynamical
systems (5 bonus slides).

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Theoretical properties of RPCholesky

For any psd matrix A ∈ RN×N , let bAcr be the best
rank-r approximation, which comes from an r -truncated
eigendecomposition of A.

Math question. How many columns k are needed to
guarantee an (r , ε)-approximation

E tr(A− Â) ≤
(
1 + ε

)
tr(A− bAcr)

for every N × N input matrix?

RPCholesky error bound
(Chen, Epperly, Tropp & Webber, 2022)

RPCholesky guarantees an (r , ε)-approximation for

k ≥ r

ε
+ r log

(1

ε
· trA

tr(A− bAcr)

)
.

∗ When eigenvalues decay fast,
tr(A− bAcr) is small so the error
E tr(A− Â) must be small.

∗ Since the log factor is small,
RPCholesky requires a small
multiple (≤ 10) of r/ε columns.

∗ The bounds are near-optimal —
there is a psd matrix that cannot
be approximated in fewer than
r/ε columns.

∗ Proof uses matrix monotonicity,
matrix concavity, and dynamical
systems (5 bonus slides).

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Theoretical properties of RPCholesky

For any psd matrix A ∈ RN×N , let bAcr be the best
rank-r approximation, which comes from an r -truncated
eigendecomposition of A.

Math question. How many columns k are needed to
guarantee an (r , ε)-approximation

E tr(A− Â) ≤
(
1 + ε

)
tr(A− bAcr)

for every N × N input matrix?

RPCholesky error bound
(Chen, Epperly, Tropp & Webber, 2022)

RPCholesky guarantees an (r , ε)-approximation for

k ≥ r

ε
+ r log

(1

ε
· trA

tr(A− bAcr)

)
.

∗ When eigenvalues decay fast,
tr(A− bAcr) is small so the error
E tr(A− Â) must be small.

∗ Since the log factor is small,
RPCholesky requires a small
multiple (≤ 10) of r/ε columns.

∗ The bounds are near-optimal —
there is a psd matrix that cannot
be approximated in fewer than
r/ε columns.

∗ Proof uses matrix monotonicity,
matrix concavity, and dynamical
systems (5 bonus slides).

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Application in molecular dynamics

∗ In biochemistry, we run molecular
dynamics simulations to understand
protein behavior and design new drugs.

∗ For example, consider alanine dipeptide,
CH3 – CO – NH – CαHCH3 – CO – NH – CH3.
After eliminating hydrogens, the data
has N = 250, 000 configurations of 10
atoms.

∗ We want to identify metastable states
which the miniprotein occupies for a
long time with rare transitions.

− Let’s introduce a kernel function
φ : R30 × R30 → R+ that quantifies similarity
between configurations:

φ(x i , x j) = exp
(
− 1

2σ2
‖x i − x j‖2

)
.

and identify clusters with high φ values
within clusters and low φ values across
clusters (see bonus slides).

− The bottleneck is computing the dominant
eigenvectors of an N ×N kernel matrix. Even
forming and storing this matrix is expensive.

− Traditionally, scientists subsampled their data
and ran clustering codes for > 1 day.

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Application in molecular dynamics

∗ In biochemistry, we run molecular
dynamics simulations to understand
protein behavior and design new drugs.

∗ For example, consider alanine dipeptide,
CH3 – CO – NH – CαHCH3 – CO – NH – CH3.
After eliminating hydrogens, the data
has N = 250, 000 configurations of 10
atoms.

∗ We want to identify metastable states
which the miniprotein occupies for a
long time with rare transitions.

− Let’s introduce a kernel function
φ : R30 × R30 → R+ that quantifies similarity
between configurations:

φ(x i , x j) = exp
(
− 1

2σ2
‖x i − x j‖2

)
.

and identify clusters with high φ values
within clusters and low φ values across
clusters (see bonus slides).

− The bottleneck is computing the dominant
eigenvectors of an N ×N kernel matrix. Even
forming and storing this matrix is expensive.

− Traditionally, scientists subsampled their data
and ran clustering codes for > 1 day.

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Application in molecular dynamics

∗ In biochemistry, we run molecular
dynamics simulations to understand
protein behavior and design new drugs.

∗ For example, consider alanine dipeptide,
CH3 – CO – NH – CαHCH3 – CO – NH – CH3.
After eliminating hydrogens, the data
has N = 250, 000 configurations of 10
atoms.

∗ We want to identify metastable states
which the miniprotein occupies for a
long time with rare transitions.

− Let’s introduce a kernel function
φ : R30 × R30 → R+ that quantifies similarity
between configurations:

φ(x i , x j) = exp
(
− 1

2σ2
‖x i − x j‖2

)
.

and identify clusters with high φ values
within clusters and low φ values across
clusters (see bonus slides).

− The bottleneck is computing the dominant
eigenvectors of an N ×N kernel matrix. Even
forming and storing this matrix is expensive.

− Traditionally, scientists subsampled their data
and ran clustering codes for > 1 day.

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Application in molecular dynamics

∗ In biochemistry, we run molecular
dynamics simulations to understand
protein behavior and design new drugs.

∗ For example, consider alanine dipeptide,
CH3 – CO – NH – CαHCH3 – CO – NH – CH3.
After eliminating hydrogens, the data
has N = 250, 000 configurations of 10
atoms.

∗ We want to identify metastable states
which the miniprotein occupies for a
long time with rare transitions.

− Let’s introduce a kernel function
φ : R30 × R30 → R+ that quantifies similarity
between configurations:

φ(x i , x j) = exp
(
− 1

2σ2
‖x i − x j‖2

)
.

and identify clusters with high φ values
within clusters and low φ values across
clusters (see bonus slides).

− The bottleneck is computing the dominant
eigenvectors of an N ×N kernel matrix. Even
forming and storing this matrix is expensive.

− Traditionally, scientists subsampled their data
and ran clustering codes for > 1 day.

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Application in molecular dynamics

∗ In biochemistry, we run molecular
dynamics simulations to understand
protein behavior and design new drugs.

∗ For example, consider alanine dipeptide,
CH3 – CO – NH – CαHCH3 – CO – NH – CH3.
After eliminating hydrogens, the data
has N = 250, 000 configurations of 10
atoms.

∗ We want to identify metastable states
which the miniprotein occupies for a
long time with rare transitions.

− Let’s introduce a kernel function
φ : R30 × R30 → R+ that quantifies similarity
between configurations:

φ(x i , x j) = exp
(
− 1

2σ2
‖x i − x j‖2

)
.

and identify clusters with high φ values
within clusters and low φ values across
clusters (see bonus slides).

− The bottleneck is computing the dominant
eigenvectors of an N ×N kernel matrix. Even
forming and storing this matrix is expensive.

− Traditionally, scientists subsampled their data
and ran clustering codes for > 1 day.

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Application in molecular dynamics

∗ In biochemistry, we run molecular
dynamics simulations to understand
protein behavior and design new drugs.

∗ For example, consider alanine dipeptide,
CH3 – CO – NH – CαHCH3 – CO – NH – CH3.
After eliminating hydrogens, the data
has N = 250, 000 configurations of 10
atoms.

∗ We want to identify metastable states
which the miniprotein occupies for a
long time with rare transitions.

− Let’s introduce a kernel function
φ : R30 × R30 → R+ that quantifies similarity
between configurations:

φ(x i , x j) = exp
(
− 1

2σ2
‖x i − x j‖2

)
.

and identify clusters with high φ values
within clusters and low φ values across
clusters (see bonus slides).

− The bottleneck is computing the dominant
eigenvectors of an N ×N kernel matrix. Even
forming and storing this matrix is expensive.

− Traditionally, scientists subsampled their data
and ran clustering codes for > 1 day.

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Application in molecular dynamics

∗ In biochemistry, we run molecular
dynamics simulations to understand
protein behavior and design new drugs.

∗ For example, consider alanine dipeptide,
CH3 – CO – NH – CαHCH3 – CO – NH – CH3.
After eliminating hydrogens, the data
has N = 250, 000 configurations of 10
atoms.

∗ We want to identify metastable states
which the miniprotein occupies for a
long time with rare transitions.

− Let’s introduce a kernel function
φ : R30 × R30 → R+ that quantifies similarity
between configurations:

φ(x i , x j) = exp
(
− 1

2σ2
‖x i − x j‖2

)
.

and identify clusters with high φ values
within clusters and low φ values across
clusters (see bonus slides).

− The bottleneck is computing the dominant
eigenvectors of an N ×N kernel matrix. Even
forming and storing this matrix is expensive.

− Traditionally, scientists subsampled their data
and ran clustering codes for > 1 day.

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Application in molecular dynamics

RPCholesky clusters 250, 000 points in just 10 seconds on a laptop. Near-perfect clustering is
obtained with a rank k = 150 approximation.

0 25 50 75 100 125 150 175 200
Approximation rank k

10 3

10 2

10 1

100

R
at

e
of

 m
is

cl
as

si
fic

at
io

ns

Figure: When we cluster configurations in R30, we find four clusters that are well-aligned with nonlinear
functions of the coordinates (φ and ψ dihedral angles).

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Summary

Question. Why was spectral clustering so slow in the past?

* Many scientists relied on dense eigendecomposition, which costs O(N3) operations.

* Krylov methods are 103× faster (N2r cost), and the fastest Krylov method is RBKI.

* Column Nyström methods are 106× faster than dense eigendecomposition (Nr2 cost), and
the most accurate and robust column Nyström method is RPCholesky.

* As a limitation, RPCholesky is only accurate when there is fast eigenvalue decay — it
wouldn’t work for the noisy genetics data. However, we often expect kernel matrices and
neural net matrices to have fast eigenvalue decay.

Main answer. Communication with scientists is essential to make sure they are aware of
these advances.

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Summary

Question. Why was spectral clustering so slow in the past?

* Many scientists relied on dense eigendecomposition, which costs O(N3) operations.

* Krylov methods are 103× faster (N2r cost), and the fastest Krylov method is RBKI.

* Column Nyström methods are 106× faster than dense eigendecomposition (Nr2 cost), and
the most accurate and robust column Nyström method is RPCholesky.

* As a limitation, RPCholesky is only accurate when there is fast eigenvalue decay — it
wouldn’t work for the noisy genetics data. However, we often expect kernel matrices and
neural net matrices to have fast eigenvalue decay.

Main answer. Communication with scientists is essential to make sure they are aware of
these advances.

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Summary

Question. Why was spectral clustering so slow in the past?

* Many scientists relied on dense eigendecomposition, which costs O(N3) operations.

* Krylov methods are 103× faster (N2r cost), and the fastest Krylov method is RBKI.

* Column Nyström methods are 106× faster than dense eigendecomposition (Nr2 cost), and
the most accurate and robust column Nyström method is RPCholesky.

* As a limitation, RPCholesky is only accurate when there is fast eigenvalue decay — it
wouldn’t work for the noisy genetics data. However, we often expect kernel matrices and
neural net matrices to have fast eigenvalue decay.

Main answer. Communication with scientists is essential to make sure they are aware of
these advances.

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Summary

Question. Why was spectral clustering so slow in the past?

* Many scientists relied on dense eigendecomposition, which costs O(N3) operations.

* Krylov methods are 103× faster (N2r cost), and the fastest Krylov method is RBKI.

* Column Nyström methods are 106× faster than dense eigendecomposition (Nr2 cost), and
the most accurate and robust column Nyström method is RPCholesky.

* As a limitation, RPCholesky is only accurate when there is fast eigenvalue decay — it
wouldn’t work for the noisy genetics data. However, we often expect kernel matrices and
neural net matrices to have fast eigenvalue decay.

Main answer. Communication with scientists is essential to make sure they are aware of
these advances.

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Summary

Question. Why was spectral clustering so slow in the past?

* Many scientists relied on dense eigendecomposition, which costs O(N3) operations.

* Krylov methods are 103× faster (N2r cost), and the fastest Krylov method is RBKI.

* Column Nyström methods are 106× faster than dense eigendecomposition (Nr2 cost), and
the most accurate and robust column Nyström method is RPCholesky.

* As a limitation, RPCholesky is only accurate when there is fast eigenvalue decay — it
wouldn’t work for the noisy genetics data. However, we often expect kernel matrices and
neural net matrices to have fast eigenvalue decay.

Main answer. Communication with scientists is essential to make sure they are aware of
these advances.

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Summary

Question. Why was spectral clustering so slow in the past?

* Many scientists relied on dense eigendecomposition, which costs O(N3) operations.

* Krylov methods are 103× faster (N2r cost), and the fastest Krylov method is RBKI.

* Column Nyström methods are 106× faster than dense eigendecomposition (Nr2 cost), and
the most accurate and robust column Nyström method is RPCholesky.

* As a limitation, RPCholesky is only accurate when there is fast eigenvalue decay — it
wouldn’t work for the noisy genetics data. However, we often expect kernel matrices and
neural net matrices to have fast eigenvalue decay.

Main answer. Communication with scientists is essential to make sure they are aware of
these advances.

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Research vision

Question. How can we deploy randomized methods to speed up scientific computations?

Application area. Kernel methods are machine learning methods that use a positive-definite
kernel function φ : Rd × Rd → R to quantify “similarity” between data points, φ(x (i), x (j)).

Figure: Used for prediction (“supervised learning”) Figure: Used for clustering (“unsupervised learning”)

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Research vision

Question. How can we deploy randomized methods to speed up scientific computations?

Application area. Kernel methods are machine learning methods that use a positive-definite
kernel function φ : Rd × Rd → R to quantify “similarity” between data points, φ(x (i), x (j)).

Figure: Used for prediction (“supervised learning”) Figure: Used for clustering (“unsupervised learning”)

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Research vision

Question. How can we deploy randomized methods to speed up scientific computations?

Application area. Kernel methods are machine learning methods that use a positive-definite
kernel function φ : Rd × Rd → R to quantify “similarity” between data points, φ(x (i), x (j)).

Figure: Used for prediction (“supervised learning”) Figure: Used for clustering (“unsupervised learning”)

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Research vision

Kernel methods perform well for small data
sets, after tuning the similarity measure φ.

Strong kernel hypothesis. Data-adaptive
kernel methods perform as well as neural
nets for large data sets (≥ 105 data points).

It is impossible to certify or refute the strong
kernel hypothesis, because we lack the
computational tools to quickly apply kernel
methods to large data sets.

Research program. Develop randomized
algorithms to apply kernel methods at scale
and resolve this strong kernel hypothesis.

Ongoing and future projects:

• Randomly pivoted Cholesky for infinite
data sets (with E Epperly & J Tropp)

• Data-adaptive kernels for biochemistry
(with D Aristoff & G Simpson).

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Research vision

Kernel methods perform well for small data
sets, after tuning the similarity measure φ.

Strong kernel hypothesis. Data-adaptive
kernel methods perform as well as neural
nets for large data sets (≥ 105 data points).

It is impossible to certify or refute the strong
kernel hypothesis, because we lack the
computational tools to quickly apply kernel
methods to large data sets.

Research program. Develop randomized
algorithms to apply kernel methods at scale
and resolve this strong kernel hypothesis.

Ongoing and future projects:

• Randomly pivoted Cholesky for infinite
data sets (with E Epperly & J Tropp)

• Data-adaptive kernels for biochemistry
(with D Aristoff & G Simpson).

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Research vision

Kernel methods perform well for small data
sets, after tuning the similarity measure φ.

Strong kernel hypothesis. Data-adaptive
kernel methods perform as well as neural
nets for large data sets (≥ 105 data points).

It is impossible to certify or refute the strong
kernel hypothesis, because we lack the
computational tools to quickly apply kernel
methods to large data sets.

Research program. Develop randomized
algorithms to apply kernel methods at scale
and resolve this strong kernel hypothesis.

Ongoing and future projects:

• Randomly pivoted Cholesky for infinite
data sets (with E Epperly & J Tropp)

• Data-adaptive kernels for biochemistry
(with D Aristoff & G Simpson).

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Research vision

Kernel methods perform well for small data
sets, after tuning the similarity measure φ.

Strong kernel hypothesis. Data-adaptive
kernel methods perform as well as neural
nets for large data sets (≥ 105 data points).

It is impossible to certify or refute the strong
kernel hypothesis, because we lack the
computational tools to quickly apply kernel
methods to large data sets.

Research program. Develop randomized
algorithms to apply kernel methods at scale
and resolve this strong kernel hypothesis.

Ongoing and future projects:

• Randomly pivoted Cholesky for infinite
data sets (with E Epperly & J Tropp)

• Data-adaptive kernels for biochemistry
(with D Aristoff & G Simpson).

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Research vision

Kernel methods perform well for small data
sets, after tuning the similarity measure φ.

Strong kernel hypothesis. Data-adaptive
kernel methods perform as well as neural
nets for large data sets (≥ 105 data points).

It is impossible to certify or refute the strong
kernel hypothesis, because we lack the
computational tools to quickly apply kernel
methods to large data sets.

Research program. Develop randomized
algorithms to apply kernel methods at scale
and resolve this strong kernel hypothesis.

Ongoing and future projects:

• Randomly pivoted Cholesky for infinite
data sets (with E Epperly & J Tropp)

• Data-adaptive kernels for biochemistry
(with D Aristoff & G Simpson).

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Research vision

Randomized algorithms have many
applications:

1. Randomized low-rank approximation can
accelerate ADMM and Newton’s method in
optimization.

2. Random sparsification methods can solve
large-scale Laplacian linear systems.

3. “LoRA: Low-Rank Adaptation of Large
Language Models” is used to fine-tune
GPT-4. There is an opportunity for
randomized low-rank approximation.

Research vision. Develop and analyze
randomized algorithms to address 21st
century computing challenges, while
mathematically guaranteeing accuracy.

Ongoing and future projects:

• Fast, randomized algorithms for graph
signal processing (with R Lu).

• Randomly sparsified PageRank solvers
(with J Weare).

Thank you for your attention! Does anyone have questions?

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Research vision

Randomized algorithms have many
applications:

1. Randomized low-rank approximation can
accelerate ADMM and Newton’s method in
optimization.

2. Random sparsification methods can solve
large-scale Laplacian linear systems.

3. “LoRA: Low-Rank Adaptation of Large
Language Models” is used to fine-tune
GPT-4. There is an opportunity for
randomized low-rank approximation.

Research vision. Develop and analyze
randomized algorithms to address 21st
century computing challenges, while
mathematically guaranteeing accuracy.

Ongoing and future projects:

• Fast, randomized algorithms for graph
signal processing (with R Lu).

• Randomly sparsified PageRank solvers
(with J Weare).

Thank you for your attention! Does anyone have questions?

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Research vision

Randomized algorithms have many
applications:

1. Randomized low-rank approximation can
accelerate ADMM and Newton’s method in
optimization.

2. Random sparsification methods can solve
large-scale Laplacian linear systems.

3. “LoRA: Low-Rank Adaptation of Large
Language Models” is used to fine-tune
GPT-4. There is an opportunity for
randomized low-rank approximation.

Research vision. Develop and analyze
randomized algorithms to address 21st
century computing challenges, while
mathematically guaranteeing accuracy.

Ongoing and future projects:

• Fast, randomized algorithms for graph
signal processing (with R Lu).

• Randomly sparsified PageRank solvers
(with J Weare).

Thank you for your attention! Does anyone have questions?

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Research vision

Randomized algorithms have many
applications:

1. Randomized low-rank approximation can
accelerate ADMM and Newton’s method in
optimization.

2. Random sparsification methods can solve
large-scale Laplacian linear systems.

3. “LoRA: Low-Rank Adaptation of Large
Language Models” is used to fine-tune
GPT-4. There is an opportunity for
randomized low-rank approximation.

Research vision. Develop and analyze
randomized algorithms to address 21st
century computing challenges, while
mathematically guaranteeing accuracy.

Ongoing and future projects:

• Fast, randomized algorithms for graph
signal processing (with R Lu).

• Randomly sparsified PageRank solvers
(with J Weare).

Thank you for your attention! Does anyone have questions?

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Research vision

Randomized algorithms have many
applications:

1. Randomized low-rank approximation can
accelerate ADMM and Newton’s method in
optimization.

2. Random sparsification methods can solve
large-scale Laplacian linear systems.

3. “LoRA: Low-Rank Adaptation of Large
Language Models” is used to fine-tune
GPT-4. There is an opportunity for
randomized low-rank approximation.

Research vision. Develop and analyze
randomized algorithms to address 21st
century computing challenges, while
mathematically guaranteeing accuracy.

Ongoing and future projects:

• Fast, randomized algorithms for graph
signal processing (with R Lu).

• Randomly sparsified PageRank solvers
(with J Weare).

Thank you for your attention! Does anyone have questions?

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Research vision

Randomized algorithms have many
applications:

1. Randomized low-rank approximation can
accelerate ADMM and Newton’s method in
optimization.

2. Random sparsification methods can solve
large-scale Laplacian linear systems.

3. “LoRA: Low-Rank Adaptation of Large
Language Models” is used to fine-tune
GPT-4. There is an opportunity for
randomized low-rank approximation.

Research vision. Develop and analyze
randomized algorithms to address 21st
century computing challenges, while
mathematically guaranteeing accuracy.

Ongoing and future projects:

• Fast, randomized algorithms for graph
signal processing (with R Lu).

• Randomly sparsified PageRank solvers
(with J Weare).

Thank you for your attention! Does anyone have questions?

Introduction RBKI is fast RPCholesky is blazing fast Conclusion

Research vision

Randomized algorithms have many
applications:

1. Randomized low-rank approximation can
accelerate ADMM and Newton’s method in
optimization.

2. Random sparsification methods can solve
large-scale Laplacian linear systems.

3. “LoRA: Low-Rank Adaptation of Large
Language Models” is used to fine-tune
GPT-4. There is an opportunity for
randomized low-rank approximation.

Research vision. Develop and analyze
randomized algorithms to address 21st
century computing challenges, while
mathematically guaranteeing accuracy.

Ongoing and future projects:

• Fast, randomized algorithms for graph
signal processing (with R Lu).

• Randomly sparsified PageRank solvers
(with J Weare).

Thank you for your attention! Does anyone have questions?

Bonus slides: RPCholesky proof Bonus slides: RBKI proof Bonus slides: Kernel spectral clustering

RPCholesky theorem

Main theorem (Chen, Epperly, Tropp, & Webber, 2022)

Fix a psd matrix A ∈ RN×N and let bAcr denote an optimal rank-r approximation obtained
from an r -truncated eigendecomposition.

RPCholesky generates a k-column Nyström approximation s.t.

E tr(A− Â) ≤ (1 + ε) · tr(A− bAcr).

as soon as

k ≥ r

ε
+ r log

(1

ε
· trA

tr(A− bAcr)

)
.

Proof uses ideas of

− matrix monotonicity,

− matrix concavity,

− dynamical systems.

Let’s go!

Bonus slides: RPCholesky proof Bonus slides: RBKI proof Bonus slides: Kernel spectral clustering

RPCholesky proof

Recall the recursive definition of RPCholesky:

• Set A(0) = A.

• For i = 1, . . . ,N, sample si ∼ diagA(i−1) and set

A(i) = A(i−1) − A(i−1)(:, si)A(i−1)(si , :)

a
(i−1)
si si

.

Definition

Introduce the expected residual function

Φ(A) := E
[
A(1)

∣∣ A] = A−
N∑

s1=1

as1s1
trA

A(:, s1)A(s1, :)

as1s1
= A− A2

trA
.

Lemma

Φ is monotone and concave with respect to the psd ordering.

Bonus slides: RPCholesky proof Bonus slides: RBKI proof Bonus slides: Kernel spectral clustering

RPCholesky proof

Lemma

The RPCholesky residual satisfies

E tr A(k) ≤ tr Φ◦k
(
A
)
.

Proof.

Let A be a psd matrix. Using the matrix Jensen’s inequality,

EA(i+1) = EE
[
A(i+1)

∣∣A(i)
]

= EΦ
(
A(i)

)
� Φ

(
EA(i)

)
for i = 0, 1, . . . , k − 1. Applying the above display recursively,

EA(k) � Φ
(
EA(k−1)) � Φ ◦Φ

(
EA(k−2)) � · · · � Φ◦k

(
A
)
.

The trace is linear and respects psd ordering, hence

E tr A(k) = trEA(k) ≤ tr Φ◦k
(
A
)
.

Bonus slides: RPCholesky proof Bonus slides: RBKI proof Bonus slides: Kernel spectral clustering

RPCholesky proof

Proof of main theorem (6 steps):

1. We know E tr A(k) ≤ tr Φ◦k
(
A
)
. The quantity tr Φ◦k

(
A
)

depends only on the eigenvalues
of A, so we take A to be diagonal.

2. By concavity, the worst-case matrix is

A = diag

(
a

r
, . . . ,

a

r︸ ︷︷ ︸
r times

,
b

N − r
, . . . ,

b

N − r︸ ︷︷ ︸
N − r times

)
.

3. By definition of Φ, we obtain

Φ◦k
(
A
)

= diag

(
a(k)

r
, . . . ,

a(k)

r︸ ︷︷ ︸
r times

,
b(k)

N − r
, . . . ,

b(k)

N − r︸ ︷︷ ︸
N − r times

)
,

where
(
a(i)
)
i=0,1,...

and
(
b(i)
)
i=0,1,...

are decreasing sequences with explicit formulae.

Bonus slides: RPCholesky proof Bonus slides: RBKI proof Bonus slides: Kernel spectral clustering

RPCholesky proof

Proof of main theorem (6 steps):

4. Moreover, we find an explicit upper bound

tr Φ◦k
(
A
)
≤ a(k) + b(0), a(k) − a(k−1) =

−
(
a(k−1)

)2
r
(
a(k−1) + b(0)

) .
5. At each instant t = 0, 1, 2, . . ., the discrete-time process a(t) is bounded from above by the

continuous-time process x(t) satisfying

d

dt
x(t) = − x(t)2

r
(
x(t) + b(0)

) with initial condition x(0) = a(0).

6. By direct calculation,

x(t) ≤ εb(0) for any t ≥ r

ε
+ r log

(1

ε
· trA

tr(A− bAcr)

)
.

Bonus slides: RPCholesky proof Bonus slides: RBKI proof Bonus slides: Kernel spectral clustering

RBKI proof

RBKI guarantees for psd matrices (Tropp & Webber, 2023)

For each block size k ≥ 2r + 1 and number of multiplications m ≥ 2, RBKI satisfies

E‖A− Â‖ ≤ exp

([
log(4N + 4)

4m − 6

]2)
‖A− bAcr‖.

Proof uses ideas of

− Chebyshev polynomials,

− convexity and almost convexity,

− properties of Gaussian matrices.

Let’s go!

Bonus slides: RPCholesky proof Bonus slides: RBKI proof Bonus slides: Kernel spectral clustering

RBKI theorem

Tensions in the proof:

• The main idea is apply a filter φ(A) that increases the top eigenvalues and decreases the
bottom eigenvalues.

• We need to ensure φ(A)Ω lies inside the approximation space, so we use Chebyshev
polynomials.

• However, there is a challenge. The Chebyshev filtering argument only applies to

‖(I−Πφ(A)Ω)φ(A)‖,

where Πφ(A)Ω is the orthogonal projector onto the range of φ(A)Ω, but the actual error
attained by RBKI is

‖(I−Πφ(A)Ω)A‖.

How can we relate these two quantities?

Bonus slides: RPCholesky proof Bonus slides: RBKI proof Bonus slides: Kernel spectral clustering

RBKI theorem

Lemma (Jensen’s inequality with “almost” convex functions, Tropp & Webber 2023)

Consider symmetric A ∈ RN×N , a random rank-r orthogonal projection Q ∈ RN×N , and a
function f : [0,∞)→ R that has a supporting line at (x , f (x)) for x ≥ σr+1(A)2. Then,

f
(
E‖(I−Q)A‖2

)
≤ E‖(I−Q)f (A2)(I−Q)‖.

0.00 0.25 0.50 0.75 1.00 1.25
x

0

2

4

y

y = T5(x)
Supporting line
at x = 1

Chebyshev polynomials Ti (x) are almost
convex. They admit supporting lines on the
range x ≥ 1.

Bonus slides: RPCholesky proof Bonus slides: RBKI proof Bonus slides: Kernel spectral clustering

RBKI theorem

Proof of main theorem (3 steps):

1. The RBKI approximation satisfies

‖A− Â‖ ≤ ‖(I−Π[A1/2Ω ··· Am−1/2Ω])A‖.

2. We apply the majorization
‖A− Â‖ ≤ ‖(I−Q)A‖,

where
Q = φ(A)ΩΩ†1,

is a rank-r orthogonal projection. It is defined using the modified Chebyshev polynomial

φ(x) = xT2m−1

(√ x

λr+1(A)

)
and the N × r matrix

Ω1 =
[
v 1(A) · · · v r (A)

]T
Ω.

where v i (A) are the dominant r eigenvectors of A.

Bonus slides: RPCholesky proof Bonus slides: RBKI proof Bonus slides: Kernel spectral clustering

RBKI theorem

Proof of main theorem (3 steps):

3. Using the “almost convexity” lemma with f (x) = φ(
√
x)2, calculate

f
(
E‖(I−Q)A‖2

)
≤ E‖(I−Q)f (A2)(I−Q)‖
= E‖φ(A)(I−Q)‖2

≤ σr+1(φ(A))2 +
r

k − r − 1

∑N

i=r+1
σi (φ(A))2

≤ σr+1(A)2 +
r

k − r − 1

∑N

i=r+1
σi (A)2.

The third line uses a standard formula for the moments of an inverse Wishart matrix. The
fourth line uses the fact that λi (φ(A)) ≤ λi (A) for i > r . This gives a stronger version of
the result.

Bonus slides: RPCholesky proof Bonus slides: RBKI proof Bonus slides: Kernel spectral clustering

Kernel spectral clustering

Kernel spectral clustering: formulation

Find a low-dimensional embedding V ∈ RN×k of N data points into Rk that minimizes
distortion

1

2

N∑
i,j=1

φ(x i , x j)‖V (i , ·)− V (j , ·)‖2

while satisfying the isotropy condition

N∑
i=1

(
N∑
j=1

φ(x i , x j)

)
V (i , ·)V (i , ·)T = I

Then apply k-means clustering to the rows of V .

Bonus slides: RPCholesky proof Bonus slides: RBKI proof Bonus slides: Kernel spectral clustering

Kernel spectral clustering

Kernel spectral clustering leads to an exact solution (Belkin & Niyogi, 2003).

Kernel spectral clustering: algorithm

1. Form the adjacency matrix W ∈ RN×N with entries wij = φ(x i , x j).

2. Form the diagonal matrix D ∈ RN×N containing the row sums dii =
∑N

j=1 wij .

3. Find the top eigenvectors Ṽ =
[
Ṽ 1 · · · Ṽ r

]
of D−1/2WD−1/2.

4. Set V = D−1/2Ṽ and apply k-means to the rows of V .

