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Research Statement

e [ xecutive summary

In the 21st century, we have witnessed increases in data availability and computational resources,
yet algorithms for data analysis remain painfully slow. Chemists struggle to find clusters in data
sets with IV > 10° molecular configurations, because spectral clustering would require factorizing
an N x N matrix that is too large to even store on a computer. Meanwhile, geophysicists struggle
to simulate Category 5 hurricanes reaching Boston, because generating high-resolution simulations
would require thousands of computers operating for years. Motivated by such seemingly impossible
computations, my role as an applied mathematician is to build new randomized algorithms that offer
speed-up factors of at least 10x—100x and support these algorithms by proving rigorous guarantees.

Randomized algorithms accelerate computations by creating a balance between exploration
of possible solutions and exploitation of information regarding the optimal solution. Randomization
has achieved success in numerical linear algebra [MT20] and optimization [CBS14]. Yet, many
problems are still solved using deterministic algorithms, which can only exploit information without
any exploration. The time is ripe to deploy randomness to speed up computations further.

As my first research program, | am using randomized algorithms to compute low-rank
approximations of kernel matrices which arise in machine learning. Traditionally, kernel machine
learning has been challenging for data sets with N > 10° points because the methods require
O(N?3) floating point operations. However, | am investigating a randomized strategy that reduces
the cost from O(N?) to O(k*N) operations where k is the kernel approximation rank, which can
be set orders of magnitude smaller than N [Che+23; Dia+23]. Before it was common to run
spectral clustering codes for over a day on high-performance workstations [Roh+11]. In contrast, my
randomized low-rank approach accurately clusters N = 2.5 x 10° data points in just 10 seconds
on a laptop [Che+23]. To support this approach, | have proved error bounds that quantify the
relationship between approximation accuracy and kernel matrix eigenvalue decay [TW23; Che+23].

Second, | am developing a rare event sampling algorithm inspired by the survival of the
fittest. The algorithm uses just a small ensemble of simulations. To assess the probability of a rare
event, the algorithm duplicates the “fittest” simulations (deemed likely to lead to the rare event)
and randomly eliminates the “least fit" simulations (deemed unlikely to lead to the rare event). The
algorithm leads to a 7x speed-up when simulating intense hurricanes near Boston [Web-+19] and
a 30x speed-up when simulating Mercury's close encounters with Venus [Abb+21]. | have proved
the algorithm produces unbiased estimates [Web+19] and am working to establish optimality. This
research has been featured in Forbes.com, the California Business Journal, and SIAM News.

Below, | describe my research programs in more detail and state my overall research vision.

mmmm— Program 1: Accelerate kernel machine learning

Kernel methods are a popular set of algorithms for prediction and clustering. Kernel methods
perform interpretable Al, since they use an explicit kernel function ¢ : R¢ x R¢ — R to quantify
the similarity between points x1,...,zx € R? The strong kernel hypothesis posits that kernel
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methods can compete with machine learning algorithms based on neural networks [Rad+22; Lee+20;
Aro+20], but it is currently impossible to certify or refute this hypothesis because kernel methods
are too costly to be applied to the largest data sets. My vision is to resolve the strong kernel
hypothesis by building the computational tools needed to deploy kernel methods at scale.

The computational bottleneck in a kernel method is a linear system or eigenvalue problem
involving the kernel matrix K € RV*N with entries k;; = ¢(x;, x;). Storing the kernel matrix is
difficult with N > 10° data points, and traditional matrix inversion or eigendecomposition requires
an exorbitant O(N3) perations. As a cheaper alternative, | have designed algorithms that replace
the matrix K with a randomized rank-k approximation K, reducing the cost to O(k?N) operations.
Figure 1 shows that a rank & = 150 leads to nearly perfect kernel spectral clustering when applied
to a biochemistry data set with N = 2.5 x 10° points. For this example, the difference between N3
and Nk? is a factor of 3 million, and the method runs in ten seconds on a laptop [Che+23].

10° n
" :
g
=
pe
g
< 1071 &
2 o :
S E) =
S ;
Z10-2
5]
2
5]
24 Saike s
107 —p .
0 25 50 75 100 125 150 175 200 -n 0 n
Approximation rank k ¢ angle

Figure 1: Randomized kernel matrix approximation leads to near-perfect clustering of chemistry
data (left), revealing 2-dimensional clusters in a 30-dimensional data space (right). See [Che+23].

To support the randomized low-rank approach, | have proved error bounds for “randomized
block Krylov iteration”, which produces an accurate low-rank approximation at a modest cost, as well
as “randomly pivoted Cholesky”, which produces a very low-cost approximation that is accurate if
the kernel eigenvalues decay rapidly. Let | K |, denote the theoretically optimal rank-r approximation
of a positive semidefinite matrix K € RV*N  from an r-truncated eigendecomposition. Randomized
block Krylov iteration generates a low-rank approximation K that satisfies

E|K-K| <(1+4¢)||K—-|K]|.|, for r>1, &>0,

using an approximation rank k = @(rs_1/2), where the @ notation suppresses logarithmic factors
[TW23, Thm. 7.1]. Similarly, randomly pivoted Cholesky satisfies

Etr(K — K) < (14¢)tr(K — |K|,), for r>1, >0,

using a larger approximation rank k = O(re ') [Che+23, Thm. 3.1]. Bounds for randomized block
Krylov iteration were known before my work [MM15], but | improved these bounds to be numerically
accurate and contain explicit constants. My bounds for randomly pivoted Cholesky are novel.
Next steps. The efficiency of kernel machine learning can potentially be improved even
further, to just O(k3 + kN) operations and O(k? 4+ V) storage. Such a low cost is possible because
randomized low-rank approximation can be implemented in as few as O(k3 + k) operations with
rejection sampling [EM23] and memory requirements can be minimized with stochastic gradient
descent [MB17; MB19; ABP23]. Over the next two years, | will combine these ingredients to form
an accelerated strategy with error bounds building on my earlier techniques [Che+23; Dia+23|.
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s Program 2: Accelerate rare event probability calculation

Extreme weather events, such as hurricanes, floods, and heat waves, are traditionally studied using
repeated simulations from a high-resolution model. Yet, a rare event with probability p occurs just
once per p~—! simulations. Generating enough samples of the rare event might require a thousand or
ten thousand simulations, and each high-resolution simulation can require weeks of computing.
To prevent these exploding computing costs, | introduced a rare event sampling algorithm
that makes replicas of the “fittest” simulations that are leading to a rare event, while randomly
eliminating many of the “least fit" simulations [Web+19]. | proved the algorithm yields unbiased
estimates and established a variance formula to enable a posteriori error estimation [Abb+21].
Figure 2 shows an example in which the algorithm (right) produces several samples of Category 5
hurricanes near Boston (probability p = 0.002), while direct simulation (left) produces none.
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Figure 2: Survival-of-the-fittest algorithm (right) produces several Category 5 storms; direct
sampling (left) produces none. See [Web+19].

Next steps. | am advising a team of planetary scientists that is using the survival-of-the-
fittest algorithm to evaluate Mercury’s probability of experiencing a close encounter with Venus
[Abb+21; Abb+23a; Abb+23b]. Meanwhile, | am developing a theory to explain the optimal
variance that any Monte Carlo rare event sampling scheme can achieve [WAS22; Ari+23], and | plan
to extend this theory to establish an optimality guarantee for the survival-of-the-fittest algorithm.

e Additional future research directions

As an example of a future research direction, | will use iterative random sparsification to accelerate
large-scale fixed-point calculations in physics and chemistry, such as the power method for computing
ground states of molecules [SO17]. In this approach, | replace a convergent but computationally
expensive fixed-point iteration x;y; = F(x;) with a cheaper iteration ;11 = F(y:), where
y¢ = sparse(x;) is a sparse randomized approximation. Related techniques have been used to
solve eigenvalue problems as large as 10?8 x 10!%® in quantum chemistry [She+12], as well as
infinite-dimensional linear systems in PDE analysis [CDDO01], but without guaranteed accuracy. By
studying these techniques mathematically, | will identify opportunities to apply randomness in a
principled way, leading to faster and more reliable calculations.

| am also excited to investigate active learning algorithms, which identify a small represen-
tative subset xy,, ..., s, of a large data set x1,..., TN € R?. The selected data points serve as
“sensors” for interpolating functions across the complete data set. The most powerful active learning
algorithms [Mus+22] currently require expensive pre-processing steps, involving a complete pass

Robert J. Webber
& rwebber@caltech.edu e @ rwebber.people.caltech.edu


mailto:rwebber@caltech.edu
https://rwebber.people.caltech.edu

over the data. Yet | perceive the possibility of a high-performing online active learning algorithm,
where the user is presented with random data points and accepts or rejects each data point with
probability depending on the previous selections. An early version of this approach was suggested in
[EM23], but | see the potential to take many fewer samples while achieving higher accuracy.

s Conclusion: My research vision

In the 21st century, we are transitioning from deterministic algorithms to modern randomized
algorithms, which combine exploration and exploitation to optimize computational efficiency. During
this transition, new insights are needed to ensure the accuracy of the randomized algorithms. My
research has already shown how randomized algorithms exploit low-rank structure [TW23; Che+23]
and sparse structure [WW23] to provide fast and accurate solvers. My vision is to expand this library
of exploitable structures further, making randomized methods so well-understood and effective
that they are taught in every graduate math and science curriculum. In support of my vision,
| will develop new randomized algorithms which address the needs of scientists struggling with
large-scale computations. Meanwhile, | will benefit from interacting with scientists, by using their
computational challenges to prompt new developments in linear algebra and probability theory.
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