
ACM 206 Problem Set 10 June 8, 2023

1 Coding (Favorite Monte Carlo algorithm).

Since this class is wrapping up, what is your favorite Monte Carlo algorithm and why? Provide a
numerical illustration.

2 Coding (Randomized subspace iteration).

Apply the randomized SVD algorithm (randomized subspace iteration with q = 1) to approximate
the diagonal matrix

A = diag(e−.1, e−.2, . . . , e−999.9).

The approximation will be quite accurate if you use a block size k ≥ 50. Next, try to approximate
a matrix B which is a small entrywise perturbation of A:

bij = aij + Zij , Zij
iid∼ N (0, 0.0022).

Approximating B will be hard, necessitating a large block size k and/or number of iterations q.
Why?

3 Coding (Randomly pivoted Cholesky)

Randomly pivoted Cholesky selects “diverse” columns to approximate a matrix A. To see this,
generate random data points x(1), . . . ,x(N) from a mixture of Gaussians with centers at (+2,+2),
(+2,−2), (−2,+2), and (−2,−2) and variance 1/4. Define the kernel matrixA ∈ RN×N with entries
aij = exp(−∥x(i) − x(j)∥2/2), which quantifies the similarity between data points (close to one
means similar, close to zero means dissimilar). Apply randomly pivoted Cholesky to approximate
the matrix A. Which data points correspond to the first 4 selected rows? How similar is the
approximate matrix Â to the target matrix A?

4 Coding (k-means++).

If you have ever used k-means to cluster the rows of a data matrix A ∈ RL×N , you have used
randomized numerical linear algebra. The standard initialization for k-means, called k-means++
builds up a randomized rank-k approximation Â ∈ RL×N . We initialize the approximation by
setting Â = 0. Then, we perform k updates by randomly selecting a row index s ∈ {1, . . . , L} with

P{s = i} =
∑N

j=1
|aij − âij |2.

and update each row of Â as âij = asj for 1 ≤ j ≤ N if∑N

j=1
|aij − asj |2 ≤

∑N

j=1
|aij − âij |2.

Apply k-means++ to the kernel matrix A ∈ RN×N constructed in problem #3. Which data points
correspond to the first 4 selected rows? How similar is the approximate matrix Â to the target
matrix A? Compare and contrast with randomly pivoted Cholesky.
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5 Choose-your-own-adventure (Monte Carlo connection).

Can we view randomized subspace iteration and randomly pivoted Cholesky as Monte Carlo algo-
rithms? If so, how?

6 Math (Nyström approximation for psd matrices).

To approximate a general, rectangular matrix A ∈ RL×N , we can form a low-rank approximation

Â = ΠXA = XY ∗, Y = A∗X, (1)

where X ∈ RL×k is a rank-k orthogonal matrix. If A ∈ RN×N is positive semidefinite (psd), we
can alternatively form the Nyström approximation

Â = A1/2ΠA1/2XA1/2 = Y (X∗Y )†Y ∗. (2)

Which approximation leads to a smaller Frobenius norm error, (1) or (2)? Provide a proof.

7 Math (Largest eigenvalue).

Let’s prove some bounds for randomized subspace iteration.

(a) If we use randomized subspace iteration to approximate the largest singular value σ1(A) of a
matrix A ∈ RL×N , prove that

σ̂1(A)2 = max
ω∈range(Ω)

ω∗(A∗A)2qω

ω∗(A∗A)2q−1ω
, (3)

where Ω ∈ RN×k is the Gaussian initialization matrix.

(b) Show that the distribution of σ̂1(A)2 only depends on the singular values of A, regardless of
the singular vectors.

(c) Now assume without loss of generality that A is diagonal and psd, with non-increasing diag-
onal entries and rewrite (3) in a simpler form.

(d) Partition Ω =
[
Ω1

Ω2

]
and set ω to be the first column of ΩΩ†

1. Use (3) to obtain write down

relatively simple, explicit lower and upper bounds on σ̂1(A)2.

(e) What random matrix theory do we need to bound the expected value of σ̂1(A)2?
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