1 Coding (Favorite Monte Carlo algorithm).

Since this class is wrapping up, what is your favorite Monte Carlo algorithm and why? Provide a numerical illustration.

2 Coding (Randomized subspace iteration).

Apply the randomized SVD algorithm (randomized subspace iteration with $q=1$) to approximate the diagonal matrix

$$
\boldsymbol{A}=\operatorname{diag}\left(e^{-.1}, e^{-.2}, \ldots, e^{-999.9}\right)
$$

The approximation will be quite accurate if you use a block size $k \geq 50$. Next, try to approximate a matrix \boldsymbol{B} which is a small entrywise perturbation of \boldsymbol{A} :

$$
b_{i j}=a_{i j}+Z_{i j}, \quad Z_{i j} \stackrel{\mathrm{iid}}{\sim} \mathcal{N}\left(0,0.002^{2}\right)
$$

Approximating \boldsymbol{B} will be hard, necessitating a large block size k and/or number of iterations q. Why?

3 Coding (Randomly pivoted Cholesky)

Randomly pivoted Cholesky selects "diverse" columns to approximate a matrix \boldsymbol{A}. To see this, generate random data points $\boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(N)}$ from a mixture of Gaussians with centers at $(+2,+2)$, $(+2,-2),(-2,+2)$, and $(-2,-2)$ and variance $1 / 4$. Define the kernel matrix $\boldsymbol{A} \in \mathbb{R}^{N \times N}$ with entries $a_{i j}=\exp \left(-\left\|\boldsymbol{x}^{(i)}-\boldsymbol{x}^{(j)}\right\|^{2} / 2\right)$, which quantifies the similarity between data points (close to one means similar, close to zero means dissimilar). Apply randomly pivoted Cholesky to approximate the matrix \boldsymbol{A}. Which data points correspond to the first 4 selected rows? How similar is the approximate matrix $\hat{\boldsymbol{A}}$ to the target matrix \boldsymbol{A} ?

4 Coding (k-means ++).

If you have ever used k-means to cluster the rows of a data matrix $\boldsymbol{A} \in \mathbb{R}^{L \times N}$, you have used randomized numerical linear algebra. The standard initialization for k-means, called k-means ++ builds up a randomized rank- k approximation $\hat{\boldsymbol{A}} \in \mathbb{R}^{L \times N}$. We initialize the approximation by setting $\hat{\boldsymbol{A}}=\mathbf{0}$. Then, we perform k updates by randomly selecting a row index $s \in\{1, \ldots, L\}$ with

$$
\mathbb{P}\{s=i\}=\sum_{j=1}^{N}\left|a_{i j}-\hat{a}_{i j}\right|^{2}
$$

and update each row of \hat{A} as $\hat{a}_{i j}=a_{s j}$ for $1 \leq j \leq N$ if

$$
\sum_{j=1}^{N}\left|a_{i j}-a_{s j}\right|^{2} \leq \sum_{j=1}^{N}\left|a_{i j}-\hat{a}_{i j}\right|^{2}
$$

Apply k-means ++ to the kernel matrix $\boldsymbol{A} \in \mathbb{R}^{N \times N}$ constructed in problem $\# 3$. Which data points correspond to the first 4 selected rows? How similar is the approximate matrix $\hat{\boldsymbol{A}}$ to the target matrix \boldsymbol{A} ? Compare and contrast with randomly pivoted Cholesky.

5 Choose-your-own-adventure (Monte Carlo connection).

Can we view randomized subspace iteration and randomly pivoted Cholesky as Monte Carlo algorithms? If so, how?

6 Math (Nyström approximation for psd matrices).

To approximate a general, rectangular matrix $\boldsymbol{A} \in \mathbb{R}^{L \times N}$, we can form a low-rank approximation

$$
\begin{equation*}
\hat{\boldsymbol{A}}=\boldsymbol{\Pi}_{\boldsymbol{X}} \boldsymbol{A}=\boldsymbol{X} \boldsymbol{Y}^{*}, \quad \boldsymbol{Y}=\boldsymbol{A}^{*} \boldsymbol{X} \tag{1}
\end{equation*}
$$

where $\boldsymbol{X} \in \mathbb{R}^{L \times k}$ is a rank- k orthogonal matrix. If $\boldsymbol{A} \in \mathbb{R}^{N \times N}$ is positive semidefinite (psd), we can alternatively form the Nyström approximation

$$
\begin{equation*}
\hat{\boldsymbol{A}}=\boldsymbol{A}^{1 / 2} \boldsymbol{\Pi}_{\boldsymbol{A}^{1 / 2} \boldsymbol{X}} \boldsymbol{A}^{1 / 2}=\boldsymbol{Y}\left(\boldsymbol{X}^{*} \boldsymbol{Y}\right)^{\dagger} \boldsymbol{Y}^{*} \tag{2}
\end{equation*}
$$

Which approximation leads to a smaller Frobenius norm error, (1) or (2)? Provide a proof.

7 Math (Largest eigenvalue).

Let's prove some bounds for randomized subspace iteration.
(a) If we use randomized subspace iteration to approximate the largest singular value $\sigma_{1}(\boldsymbol{A})$ of a matrix $\boldsymbol{A} \in \mathbb{R}^{L \times N}$, prove that

$$
\begin{equation*}
\hat{\sigma}_{1}(\boldsymbol{A})^{2}=\max _{\boldsymbol{\omega} \in \operatorname{range}(\boldsymbol{\Omega})} \frac{\boldsymbol{\omega}^{*}\left(\boldsymbol{A}^{*} \boldsymbol{A}\right)^{2 q} \boldsymbol{\omega}}{\boldsymbol{\omega}^{*}\left(\boldsymbol{A}^{*} \boldsymbol{A}\right)^{2 q-1} \boldsymbol{\omega}}, \tag{3}
\end{equation*}
$$

where $\Omega \in \mathbb{R}^{N \times k}$ is the Gaussian initialization matrix.
(b) Show that the distribution of $\hat{\sigma}_{1}(\boldsymbol{A})^{2}$ only depends on the singular values of \boldsymbol{A}, regardless of the singular vectors.
(c) Now assume without loss of generality that \boldsymbol{A} is diagonal and psd, with non-increasing diagonal entries and rewrite (3) in a simpler form.
(d) Partition $\boldsymbol{\Omega}=\left[\begin{array}{l}\boldsymbol{\Omega}_{1} \\ \boldsymbol{\Omega}_{2}\end{array}\right]$ and set $\boldsymbol{\omega}$ to be the first column of $\boldsymbol{\Omega} \boldsymbol{\Omega}_{1}^{\dagger}$. Use (3) to obtain write down relatively simple, explicit lower and upper bounds on $\hat{\sigma}_{1}(\boldsymbol{A})^{2}$.
(e) What random matrix theory do we need to bound the expected value of $\hat{\sigma}_{1}(\boldsymbol{A})^{2}$?

