ACM 206 Problem Set 9 June 1, 2023

1 Coding (Maximum of a Brownian Motion).

Use Monte Carlo sampling to estimate the expected maximum of a standard Brownian Motion
E maxo<;<1 W (t). You will need to make a discrete approximation W(0), W(A), W(2A),...,W(1),
take a maximum, and average over N independent trials. How does the accuracy of your solution
depend on the mesh size A and the number of samples N empirically? Challenge: Repeat the
exercise for fractional Brownian motion.

2 Coding (Multilevel Monte Carlo).

Apply multilevel Monte Carlo to estimate the expected maximum of a standard Brownian Motion
E maxo<;<1 W(t). How many digits of precision can you achieve? Challenge: Repeat the exercise
for fractional Brownian motion.

3 Coding (Parallel tempering).

By now, you're (hopefully) an expert in parallel tempering. Let’s test the limits and see how far
parallel tempering can take us. Try sampling from the density
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which gets harder and harder as we increase the dimensionality d. How high can you take d
and still do a good job of sampling all 2¢ wells? Does the scaling of the temperature parameters
B1 < P2 < -+ < Bx =1 (linear versus geometric) make a difference empirically?

4 Coding (Preconditioned Crank-Nicolson)

Use preconditioned Crank-Nicolson to sample a standard Brownian Motion W(t) for 0 < ¢ < 1
after making a noisy observation W (1) = 1+ Z, where Z ~ N(0,0.25) is an independent random
error term. Hint: you need to sample a standard Brownian motion weighted by the likelihood ratio

(W) o exp(—=2|W(1) — 1]%).

Use preconditioned Crank-Nicolson proposals and accept or reject with the appropriate Metropolis-
Hastings probability.

5 Math (Karhunen-Loéve).

In Monte Carlo, we have the amazing ability to sample random functions in addition to random
variables and random vectors. Let’s say we want to sample a standard Brownian motion W(t) for
0 <t < 1. There’s an inefficient and an efficient way to do this.

1. We could sample at discrete time points W(0), W(A), W(2A),...,W (1) and use linear in-
terpolation to approximate W (t) for iA <t < (i + 1)A. (Challenge: what’s the conditional



distribution of W (t) given W (0), W(A), W(2A),...,W(1)?) But this leads to a high mean

square error
1
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0
Calculate the mean square error mathematically or empirically.
2. A smarter option is to use the eigenfunction expansion

W(t) = Z(ek, W>6k(t),
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where ey (t) = v/2sin((k — 1/2)nt) are orthonormal basis functions with respect to a standard
Gaussian distribution and the coefficients (ey, W) are independent standard Gaussians with
variance 1/((k—1/2)r)%. We can sample the first L coefficients (called the “Karhunen-Loeéve
coefficients”) and approximate W (t) using the truncated expansion

L
W(t) = (ex, W)ex(t).

k=1

Calculate the mean square error mathematically or empirically. Challenge: Prove the mean
square error is as low as possible, for any L-element basis expansion.

6 Math (Parallel tempering analysis).

Let us consider parallel tempering for a 3-state system with pmf 77 = (1 - «a)/2 a (1—a)/2).
We can target a small value of o = 10719 by sampling a sequence of pmfs with ay > ag > --- >
ay = 10710 with MCMC samplers
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Describe the resulting parallel tempering algorithm. What is the best sequence of a; values? What
is the best possible decorrelation rate?

7 Math (Preconditioned Crank-Nicolson).

Calculate the decorrelation rate for the sampler in problem #4.



