
ACM 206 Problem Set 9 June 1, 2023

1 Coding (Maximum of a Brownian Motion).

Use Monte Carlo sampling to estimate the expected maximum of a standard Brownian Motion
Emax0≤t≤1 W (t). You will need to make a discrete approximation W (0),W (∆),W (2∆), . . . ,W (1),
take a maximum, and average over N independent trials. How does the accuracy of your solution
depend on the mesh size ∆ and the number of samples N empirically? Challenge: Repeat the
exercise for fractional Brownian motion.

2 Coding (Multilevel Monte Carlo).

Apply multilevel Monte Carlo to estimate the expected maximum of a standard Brownian Motion
Emax0≤t≤1 W (t). How many digits of precision can you achieve? Challenge: Repeat the exercise
for fractional Brownian motion.

3 Coding (Parallel tempering).

By now, you’re (hopefully) an expert in parallel tempering. Let’s test the limits and see how far
parallel tempering can take us. Try sampling from the density

π(x) ∝
∑

c∈{−1,+1}d
exp(−10∥x− c∥2),

which gets harder and harder as we increase the dimensionality d. How high can you take d
and still do a good job of sampling all 2d wells? Does the scaling of the temperature parameters
β1 < β2 < · · · < βN = 1 (linear versus geometric) make a difference empirically?

4 Coding (Preconditioned Crank-Nicolson)

Use preconditioned Crank-Nicolson to sample a standard Brownian Motion W (t) for 0 ≤ t ≤ 1
after making a noisy observation W (1) = 1 + Z, where Z ∼ N (0, 0.25) is an independent random
error term. Hint: you need to sample a standard Brownian motion weighted by the likelihood ratio

ℓ(W ) ∝ exp
(
−2

∣∣W (1)− 1
∣∣2).

Use preconditioned Crank-Nicolson proposals and accept or reject with the appropriate Metropolis-
Hastings probability.

5 Math (Karhunen-Loève).

In Monte Carlo, we have the amazing ability to sample random functions in addition to random
variables and random vectors. Let’s say we want to sample a standard Brownian motion W (t) for
0 ≤ t ≤ 1. There’s an inefficient and an efficient way to do this.

1. We could sample at discrete time points W (0),W (∆),W (2∆), . . . ,W (1) and use linear in-
terpolation to approximate W (t) for i∆ < t < (i + 1)∆. (Challenge: what’s the conditional

1



distribution of W (t) given W (0),W (∆),W (2∆), . . . ,W (1)?) But this leads to a high mean
square error ∫ 1

0

E|W (t)− Ŵ (t)|2 dt .

Calculate the mean square error mathematically or empirically.

2. A smarter option is to use the eigenfunction expansion

W (t) =

∞∑
k=1

⟨ek,W ⟩ek(t),

where ek(t) =
√
2 sin((k− 1/2)πt) are orthonormal basis functions with respect to a standard

Gaussian distribution and the coefficients ⟨ek,W ⟩ are independent standard Gaussians with
variance 1/((k−1/2)π)2. We can sample the first L coefficients (called the “Karhunen-Loeéve
coefficients”) and approximate W (t) using the truncated expansion

Ŵ (t) =

L∑
k=1

⟨ek,W ⟩ek(t).

Calculate the mean square error mathematically or empirically. Challenge: Prove the mean
square error is as low as possible, for any L-element basis expansion.

6 Math (Parallel tempering analysis).

Let us consider parallel tempering for a 3-state system with pmf πT =
(
(1− α)/2 α (1− α)/2

)
.

We can target a small value of α = 10−10 by sampling a sequence of pmfs with α1 > α2 > · · · >
αN = 10−10 with MCMC samplers

P =

1− αi/(1− αi) αi/(1− αi) 0
1/2 0 1/2
0 αi/(1− αi) 1− αi/(1− αi)

 .

Describe the resulting parallel tempering algorithm. What is the best sequence of αi values? What
is the best possible decorrelation rate?

7 Math (Preconditioned Crank-Nicolson).

Calculate the decorrelation rate for the sampler in problem #4.
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