1 Coding (Maximum of a Brownian Motion).

Use Monte Carlo sampling to estimate the expected maximum of a standard Brownian Motion \(\mathbb{E} \max_{0 \leq t \leq 1} W(t) \). You will need to make a discrete approximation \(W(0), W(\Delta), W(2\Delta), \ldots, W(1) \), take a maximum, and average over \(N \) independent trials. How does the accuracy of your solution depend on the mesh size \(\Delta \) and the number of samples \(N \) empirically? Challenge: Repeat the exercise for fractional Brownian motion.

2 Coding (Multilevel Monte Carlo).

Apply multilevel Monte Carlo to estimate the expected maximum of a standard Brownian Motion \(\mathbb{E} \max_{0 \leq t \leq 1} W(t) \). How many digits of precision can you achieve? Challenge: Repeat the exercise for fractional Brownian motion.

3 Coding (Parallel tempering).

By now, you’re (hopefully) an expert in parallel tempering. Let’s test the limits and see how far parallel tempering can take us. Try sampling from the density

\[
\pi(x) \propto \sum_{c \in \{-1,+1\}^d} \exp(-10\|x - c\|^2),
\]

which gets harder and harder as we increase the dimensionality \(d \). How high can you take \(d \) and still do a good job of sampling all \(2^d \) wells? Does the scaling of the temperature parameters \(\beta_1 < \beta_2 < \cdots < \beta_N = 1 \) (linear versus geometric) make a difference empirically?

4 Coding (Preconditioned Crank-Nicolson)

Use preconditioned Crank-Nicolson to sample a standard Brownian Motion \(W(t) \) for \(0 \leq t \leq 1 \) after making a noisy observation \(W(1) = 1 + Z \), where \(Z \sim N(0,0.25) \) is an independent random error term. Hint: you need to sample a standard Brownian motion weighted by the likelihood ratio

\[
\ell(W) \propto \exp(-2|W(1) - 1|^2).
\]

Use preconditioned Crank-Nicolson proposals and accept or reject with the appropriate Metropolis-Hastings probability.

5 Math (Karhunen-Lo` eve).

In Monte Carlo, we have the amazing ability to sample random functions in addition to random variables and random vectors. Let’s say we want to sample a standard Brownian motion \(W(t) \) for \(0 \leq t \leq 1 \). There’s an inefficient and an efficient way to do this.

1. We could sample at discrete time points \(W(0), W(\Delta), W(2\Delta), \ldots, W(1) \) and use linear interpolation to approximate \(W(t) \) for \(i\Delta < t < (i+1)\Delta \). (Challenge: what’s the conditional
distribution of $W(t)$ given $W(0), W(\Delta), W(2\Delta), \ldots, W(1)$? But this leads to a high mean square error

$$\int_0^1 \mathbb{E}|W(t) - \hat{W}(t)|^2 \, dt.$$

Calculate the mean square error mathematically or empirically.

2. A smarter option is to use the eigenfunction expansion

$$W(t) = \sum_{k=1}^{\infty} \langle e_k, W \rangle e_k(t),$$

where $e_k(t) = \sqrt{2} \sin((k - 1/2)\pi t)$ are orthonormal basis functions with respect to a standard Gaussian distribution and the coefficients $\langle e_k, W \rangle$ are independent standard Gaussians with variance $1/((k-1/2)\pi)^2$. We can sample the first L coefficients (called the “Karhunen-Loève coefficients”) and approximate $W(t)$ using the truncated expansion

$$\hat{W}(t) = \sum_{k=1}^{L} \langle e_k, W \rangle e_k(t).$$

Calculate the mean square error mathematically or empirically. \textit{Challenge:} Prove the mean square error is as low as possible, for any L-element basis expansion.

6 Math (Parallel tempering analysis).

Let us consider parallel tempering for a 3-state system with pmf $\pi^T = ((1-\alpha)/2, \alpha, (1-\alpha)/2)$. We can target a small value of $\alpha = 10^{-10}$ by sampling a sequence of pmfs with $\alpha_1 > \alpha_2 > \cdots > \alpha_N = 10^{-10}$ with MCMC samplers

$$\mathbb{P} = \begin{pmatrix}
1 - \alpha_i/(1-\alpha_i) & \alpha_i/(1-\alpha_i) & 0 \\
1/2 & 0 & 1/2 \\
0 & \alpha_i/(1-\alpha_i) & 1 - \alpha_i/(1-\alpha_i)
\end{pmatrix}.$$

Describe the resulting parallel tempering algorithm. What is the best sequence of α_i values? What is the best possible decorrelation rate?

7 Math (Preconditioned Crank-Nicolson).

Calculate the decorrelation rate for the sampler in problem #4.