ACM 206 Problem Set 6 May 11, 2023

1 Coding (MCMC for a Gaussian).

Design a Metropolis-Hastings sampler for the A(0,1) distribution based on local perturbations.
Does the sampler give convergent estimates of E[Z | Z ~ N (0,1)]? What can you do to optimize?

2 Coding (MCMC for two Gaussians).

Design a Metropolis-Hastings sampler for a mixture of two Gaussians: 2N (—2,1)+1A(2,1). Check
that the sampler gives convergent estimates of the mean. What can you do to optimize?

3 Coding (MCMC error bars).

Evaluate the bias and the variance of an MCMC estimate. Which is bigger?

4 Choose-your-own-adventure (MCMC for many Gaussians).

Consider the Gaussian random field Z = (71, ..., Zx)T with density

The summation runs over neighbors i ~ j, e.g., |i — j| = 1 for the 1-d chain with an open boundary.
(a) Write down an exact sampler for the 1-d chain that samples Z;, then Zs, then Z3, etc.
(b) Write down a Gibbs sampler that updates Z; by sampling from 7 (:|Z;, j # 1).

(¢) Write down a Gibbs sampler that updates Z; <— Z; + 9 for all i in a block S of variables. Hint:
the density of § only depends on Z; for j ¢ S and the acceptance probability is 1.

5 Choose-your-own-adventure (independence sampler).

Consider an ”independence” sampler for the density m where we propose a random transition
X — Y, with Y randomly drawn from the density ¢g(y) independent of the starting point X.

(a) Write down a general formula for the acceptance probabilities.

(b) Write down a formula for the acceptance probabilities when the target is a Gaussian Z ~
N(0,1) conditional on Z > 10 and we propose ¥ ~ N (10,1).

(c) Identify the “small” sets that satisfy the one-step minorization condition. If the whole space
X is a small set, write down a simple geometric bound on ps r = Corr[f(Xy), f(X,)|Xo ~ 7.



6 Math (Spectral computations).

(a) Assume detailed balance m(dx)p(z,dy) = n(dy)p(y,dz) for all z,y € X, and show that the
forward operator [Pf](z) = [ p(z,dy)f(y) is self-adjoint in L?(r).
(b) Bound ps,f = Corr[f(Xo), f(X)|Xo ~ 7] using a general formula involving P.

(c) Bound p, s for the single-flip update sampler for the Ising model with 8 = 0. Hint: every flip
is accepted, and the eigenvectors are fs(o) = (—1)2ies Hoi=+1},

(d) Bound ps, s for the autoregressive process X; = /1 — aX;_1 + /aZ; where Z, ~ N(0,1).

(e) If kernels p and g satisfy detailed balance with the same stationary distribution and ¢(x, dy) >
p(z,dy) for all x # y, show that ¢ gives smaller correlations py; for all f (Peskun ordering).

7 Math (uncountable ergodic theorem).

To complete the proof of the uncountable ergodic theorem, fill in the missing steps 2(a)-(b).
1. We assume a one-step minorization condition
p(z,dy) > ou(dy), x €A,

involving a “small” set A € X, a constant § > 0, and a probability measure p. This allows us
to construct a split-chain X{ = (X¢, R) with transition probabilities

q((CL‘, ), (dy,O)) = p(m,dy), r¢ A
Q((xa ’I“), (dy,O)) = p(x,dy) - 6M(dy)’ T €A,
q((x,7), (dy, 1)) = p(dy), z € A

2. We define renewal times for the split chain as
t1 = min{t >0:R; = 1}, t;, = min{ti > tigq R, = 1}.

We then assume a Foster-Lyapunov drift criterion
[PV @) < 1= V()i € A} + b ¢ A)

for a function V' : X — [1,00) and constants A > 0 and b > 0.

(a) Using the drift criterion, prove that each ¢; < oco.
(b) Using the drift criterion, prove that u = E[t1|X0 ~ 1, Ry = 1] < co. Hint: first show

%\ < hmlnf ZIF’{R =1}

Then set N; = Zi:l 1{Rs; = 1} and argue using the strong law of large numbers that

lim; oo N¢/t = 1/p and consequently lim;—, o E[N;]/t = 1/p.
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3. For any bounded f, we conclude that the segments Zt (X¢) are iid with finite mean and

T-1 T_mo 1 t1—1
TZH F(X0) E[Zt_o F(X0)
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