1 Coding (MCMC for a Gaussian).

Design a Metropolis-Hastings sampler for the $\mathcal{N}(0,1)$ distribution based on local perturbations. Does the sampler give convergent estimates of $\mathbb{E}[Z \mid Z \sim \mathcal{N}(0,1)]$? What can you do to optimize?

2 Coding (MCMC for two Gaussians).

Design a Metropolis-Hastings sampler for a mixture of two Gaussians: $\frac{1}{2} \mathcal{N}(-2,1)+\frac{1}{2} \mathcal{N}(2,1)$. Check that the sampler gives convergent estimates of the mean. What can you do to optimize?

3 Coding (MCMC error bars).

Evaluate the bias and the variance of an MCMC estimate. Which is bigger?

4 Choose-your-own-adventure (MCMC for many Gaussians).

Consider the Gaussian random field $\boldsymbol{Z}=\left(Z_{1}, \ldots, Z_{N}\right)^{T}$ with density

$$
\pi(\boldsymbol{z})=\frac{1}{\mathcal{Z}_{\beta}} \exp \left(-\frac{\beta}{2} \sum_{i \sim j}\left(z_{i}-z_{j}\right)^{2}\right)
$$

The summation runs over neighbors $i \sim j$, e.g., $|i-j|=1$ for the 1 -d chain with an open boundary.
(a) Write down an exact sampler for the 1-d chain that samples Z_{1}, then Z_{2}, then Z_{3}, etc.
(b) Write down a Gibbs sampler that updates Z_{i} by sampling from $\pi\left(\cdot \mid Z_{j}, j \neq i\right)$.
(c) Write down a Gibbs sampler that updates $Z_{i} \leftarrow Z_{i}+\delta$ for all i in a block S of variables. Hint: the density of δ only depends on Z_{j} for $j \notin \mathrm{~S}$ and the acceptance probability is 1 .

5 Choose-your-own-adventure (independence sampler).

Consider an "independence" sampler for the density π where we propose a random transition $X \rightarrow Y$, with Y randomly drawn from the density $g(y)$ independent of the starting point X.
(a) Write down a general formula for the acceptance probabilities.
(b) Write down a formula for the acceptance probabilities when the target is a Gaussian $Z \sim$ $\mathcal{N}(0,1)$ conditional on $Z>10$ and we propose $Y \sim \mathcal{N}(10,1)$.
(c) Identify the "small" sets that satisfy the one-step minorization condition. If the whole space \mathcal{X} is a small set, write down a simple geometric bound on $\rho_{s, f}=\operatorname{Corr}\left[f\left(X_{0}\right), f\left(X_{s}\right) \mid X_{0} \sim \pi\right]$.

6 Math (Spectral computations).

(a) Assume detailed balance, $\pi(d x) p(x, d y)=\pi(d y) p(y, d x)$ for all $x, y \in \mathcal{X}$, and show that the forward operator $[\mathbb{P} f](x)=\int p(x, d y) f(y)$ is self-adjoint in $L^{2}(\pi)$.
(b) Bound $\rho_{s, f}=\operatorname{Corr}\left[f\left(X_{0}\right), f\left(X_{s}\right) \mid X_{0} \sim \pi\right]$ using a general formula involving \mathbb{P}.
(c) Bound $\rho_{s, f}$ for the single-flip update sampler for the Ising model with $\beta=0$. Hint: every flip is accepted, and the eigenvectors are $f_{\mathrm{S}}(\boldsymbol{\sigma})=(-1)^{\sum_{i \in \mathrm{~S}} \mathbb{1}\left\{\sigma_{i}=+1\right\}}$.
(d) Bound $\rho_{s, f}$ for the autoregressive process $X_{t}=\sqrt{1-\alpha} X_{t-1}+\sqrt{\alpha} Z_{t}$ where $Z_{t} \sim \mathcal{N}(0,1)$.
(e) If kernels p and q satisfy detailed balance with the same stationary distribution and $q(x, d y) \geq$ $p(x, d y)$ for all $x \neq y$, show that q gives smaller correlations $\rho_{f, 1}$ for all f (Peskun ordering).

7 Math (uncountable ergodic theorem).

To complete the proof of the uncountable ergodic theorem, fill in the missing steps $2(\mathrm{a})$-(b).

1. We assume a one-step minorization condition

$$
p(x, d y) \geq \delta \mu(d y), \quad x \in \mathrm{~A}
$$

involving a "small" set $\mathrm{A} \in \mathcal{X}$, a constant $\delta>0$, and a probability measure μ. This allows us to construct a split-chain $X_{t}^{\prime}=\left(X_{t}, R_{t}\right)$ with transition probabilities

$$
\left\{\begin{array}{llr}
q((x, r),(d y, 0))=p(x, d y), & & x \notin A \\
q((x, r),(d y, 0))=p(x, d y)-\delta \mu(d y), & & x \in A \\
q((x, r),(d y, 1))=\mu(d y), & & x \in A
\end{array}\right.
$$

2. We define renewal times for the split chain as

$$
t_{1}=\min \left\{t>0: R_{t}=1\right\}, \quad t_{i}=\min \left\{t_{i}>t_{i+1}: R_{t}=1\right\} .
$$

We then assume a Foster-Lyapunov drift criterion

$$
\int p(x, d y) V(y) \leq(1-\lambda) V(x) \mathbb{1}\{x \in \mathrm{~A}\}+b \mathbb{1}\{x \notin \mathrm{~A}\}
$$

for a function $V: \mathcal{X} \mapsto[1, \infty)$ and constants $\lambda>0$ and $b>0$.
(a) Using the drift criterion, prove that each $t_{i}<\infty$.
(b) Using the drift criterion, prove that $\mu=\mathbb{E}\left[t_{1} \mid X_{0} \sim \mu, R_{0}=1\right]<\infty$. Hint: first show

$$
\frac{\delta \lambda}{b} \leq \liminf _{t \rightarrow \infty} \frac{1}{t} \sum_{s=1}^{t} \mathbb{P}\left\{R_{s}=1\right\}
$$

Then set $N_{t}=\sum_{s=1}^{t} \mathbb{1}\left\{R_{s}=1\right\}$ and argue using the strong law of large numbers that $\lim _{t \rightarrow \infty} N_{t} / t=1 / \mu$ and consequently $\lim _{t \rightarrow \infty} \mathbb{E}\left[N_{t}\right] / t=1 / \mu$.
3. For any bounded f, we conclude that the segments $\sum_{t=t_{i}}^{t_{i+1}} f\left(X_{t}\right)$ are iid with finite mean and

$$
\frac{1}{T} \sum_{t=0}^{T-1} f\left(X_{t}\right)^{T \rightarrow \infty} \frac{1}{\mu} \mathbb{E}\left[\sum_{t=0}^{t_{1}-1} f\left(X_{t}\right) \mid X_{0} \sim \mu\right] .
$$

