1 Coding (MCMC for a Gaussian).

Design a Metropolis-Hastings sampler for the \(\mathcal{N}(0,1) \) distribution based on local perturbations. Does the sampler give convergent estimates of \(\mathbb{E}[Z \mid Z \sim \mathcal{N}(0,1)] \)? What can you do to optimize?

2 Coding (MCMC for two Gaussians).

Design a Metropolis-Hastings sampler for a mixture of two Gaussians: \(\frac{1}{2}\mathcal{N}(-2,1) + \frac{1}{2}\mathcal{N}(2,1) \). Check that the sampler gives convergent estimates of the mean. What can you do to optimize?

3 Coding (MCMC error bars).

Evaluate the bias and the variance of an MCMC estimate. Which is bigger?

4 Choose-your-own-adventure (MCMC for many Gaussians).

Consider the Gaussian random field \(Z = (Z_1, \ldots, Z_N)^T \) with density
\[
\pi(z) = \frac{1}{Z^\beta} \exp\left(-\frac{\beta}{2} \sum_{i \sim j} (z_i - z_j)^2\right).
\]
The summation runs over neighbors \(i \sim j \), e.g., \(|i - j| = 1 \) for the 1-d chain with an open boundary.

(a) Write down an exact sampler for the 1-d chain that samples \(Z_1 \), then \(Z_2 \), then \(Z_3 \), etc.

(b) Write down a Gibbs sampler that updates \(Z_i \) by sampling from \(\pi(\cdot \mid Z_j, j \neq i) \).

(c) Write down a Gibbs sampler that updates \(Z_i \leftarrow Z_i + \delta \) for all \(i \) in a block \(S \) of variables. Hint: the density of \(\delta \) only depends on \(Z_j \) for \(j \notin S \) and the acceptance probability is 1.

5 Choose-your-own-adventure (independence sampler).

Consider an “independence” sampler for the density \(\pi \) where we propose a random transition \(X \rightarrow Y \), with \(Y \) randomly drawn from the density \(g(y) \) independent of the starting point \(X \).

(a) Write down a general formula for the acceptance probabilities.

(b) Write down a formula for the acceptance probabilities when the target is a Gaussian \(Z \sim \mathcal{N}(0,1) \) conditional on \(Z > 10 \) and we propose \(Y \sim \mathcal{N}(10, 1) \).

(c) Identify the “small” sets that satisfy the one-step minorization condition. If the whole space \(\mathcal{X} \) is a small set, write down a simple geometric bound on \(\rho_{x,f} = \text{Corr}[f(X_0), f(X_s) | X_0 \sim \pi] \).
6 Math (Spectral computations).

(a) Assume detailed balance, \(\pi(dx)p(x, dy) = \pi(dy)p(y, dx) \) for all \(x, y \in \mathcal{X} \), and show that the forward operator \([\mathbb{P} f](x) = \int p(x, dy)f(y) \) is self-adjoint in \(L^2(\pi) \).

(b) Bound \(\rho_{s, f} = \text{Corr}[f(X_0), f(X_s)|X_0 \sim \pi] \) using a general formula involving \(\mathbb{P} \).

(c) Bound \(\rho_{s, f} \) for the single-flip update sampler for the Ising model with \(\beta = 0 \). Hint: every flip is accepted, and the eigenvectors are \(f_\sigma(\sigma) = (-1)^{\sum_{i=1}^{d} \sigma_i} \).

(d) Bound \(\rho_{s, f} \) for the autoregressive process \(X_t = \sqrt{1 - \alpha} X_{t-1} + \sqrt{\alpha} Z_t \) where \(Z_t \sim \mathcal{N}(0, 1) \).

(e) If kernels \(p \) and \(q \) satisfy detailed balance with the same stationary distribution and \(q(x, dy) \geq p(x, dy) \) for all \(x \neq y \), show that \(q \) gives smaller correlations \(\rho_{f, dy} \) for all \(f \) (Peskun ordering).

7 Math (uncountable ergodic theorem).

To complete the proof of the uncountable ergodic theorem, fill in the missing steps 2(a)-(b).

1. We assume a one-step minorization condition
 \[p(x, dy) \geq \delta \mu(dy), \quad x \in A, \]
 involving a “small” set \(A \subset \mathcal{X} \), a constant \(\delta > 0 \), and a probability measure \(\mu \). This allows us to construct a split-chain \(X'_t = (X_t, R_t) \) with transition probabilities
 \[q((x, r), (dy, 0)) = p(x, dy), \quad x \notin A, \]
 \[q((x, r), (dy, 0)) = p(x, dy) - \delta \mu(dy), \quad x \in A, \]
 \[q((x, r), (dy, 1)) = \mu(dy), \quad x \in A. \]

2. We define renewal times for the split chain as
 \[t_1 = \min\{t > 0 : R_t = 1\}, \quad t_i = \min\{t_i > t_{i-1} : R_t = 1\}. \]
 We then assume a Foster-Lyapunov drift criterion
 \[\int p(x, dy)V(y) \leq (1 - \lambda)V(x)\mathbb{I}\{x \in A\} + b\mathbb{I}\{x \notin A\} \]
 for a function \(V : \mathcal{X} \to [1, \infty) \) and constants \(\lambda > 0 \) and \(b > 0 \).

 (a) Using the drift criterion, prove that each \(t_i < \infty \).

 (b) Using the drift criterion, prove that \(\mu = \mathbb{E}[t_1|X_0 \sim \mu, R_0 = 1] < \infty \). Hint: first show
 \[\frac{\delta \lambda}{b} \leq \liminf_{t \to \infty} \frac{1}{t} \sum_{s=1}^{t} \mathbb{P}\{R_s = 1\}. \]
 Then set \(N_t = \sum_{s=1}^{t} \mathbb{I}\{R_s = 1\} \) and argue using the strong law of large numbers that
 \(\lim_{t \to \infty} N_t/t = 1/\mu \) and consequently \(\lim_{t \to \infty} \mathbb{E}[N_t]/t = 1/\mu \).

3. For any bounded \(f \), we conclude that the segments \(\sum_{t=t_i}^{t_{i+1}} f(X_t) \) are iid with finite mean and
 \[\frac{1}{T} \sum_{t=0}^{T-1} f(X_t) \overset{T \to \infty}{\longrightarrow} \frac{1}{\mu} \mathbb{E} \left[\sum_{t=0}^{t_{i+1}} f(X_t) \middle| X_0 \sim \mu \right]. \]