1 Coding (MCMC for a Gaussian).

Design a Metropolis-Hastings sampler for the $\mathcal{N}(0,1)$ distribution based on local perturbations. Does the sampler give convergent estimates of $\mathbb{E}[Z \mid Z \sim \mathcal{N}(0,1)]$? What can you do to optimize?

2 Coding (MCMC for two Gaussians).

Design a Metropolis-Hastings sampler for a mixture of two Gaussians: $\frac{1}{2}\mathcal{N}(-2,1)+\frac{1}{2}\mathcal{N}(2,1)$. Check that the sampler gives convergent estimates of the mean. What can you do to optimize?

3 Coding (MCMC error bars).

Evaluate the bias and the variance of an MCMC estimate. Which is bigger?

4 Choose-your-own-adventure (MCMC for many Gaussians).

Consider the Gaussian random field $\mathbf{Z} = (Z_1, \ldots, Z_N)^T$ with density

$$\pi(\boldsymbol{z}) = \frac{1}{\mathcal{Z}_{\beta}} \exp\left(-\frac{\beta}{2} \sum_{i \sim j} (z_i - z_j)^2\right).$$

The summation runs over neighbors $i \sim j$, e.g., |i-j| = 1 for the 1-d chain with an open boundary.

- (a) Write down an exact sampler for the 1-d chain that samples Z_1 , then Z_2 , then Z_3 , etc.
- (b) Write down a Gibbs sampler that updates Z_i by sampling from $\pi(\cdot|Z_j, j \neq i)$.
- (c) Write down a Gibbs sampler that updates $Z_i \leftarrow Z_i + \delta$ for all *i* in a block S of variables. Hint: the density of δ only depends on Z_j for $j \notin S$ and the acceptance probability is 1.

5 Choose-your-own-adventure (independence sampler).

Consider an "independence" sampler for the density π where we propose a random transition $X \to Y$, with Y randomly drawn from the density g(y) independent of the starting point X.

- (a) Write down a general formula for the acceptance probabilities.
- (b) Write down a formula for the acceptance probabilities when the target is a Gaussian $Z \sim \mathcal{N}(0,1)$ conditional on Z > 10 and we propose $Y \sim \mathcal{N}(10,1)$.
- (c) Identify the "small" sets that satisfy the one-step minorization condition. If the whole space \mathcal{X} is a small set, write down a simple geometric bound on $\rho_{s,f} = \operatorname{Corr}[f(X_0), f(X_s)|X_0 \sim \pi]$.

6 Math (Spectral computations).

- (a) Assume detailed balance, $\pi(dx)p(x,dy) = \pi(dy)p(y,dx)$ for all $x, y \in \mathcal{X}$, and show that the forward operator $[\mathbb{P}f](x) = \int p(x,dy)f(y)$ is self-adjoint in $L^2(\pi)$.
- (b) Bound $\rho_{s,f} = \operatorname{Corr}[f(X_0), f(X_s)|X_0 \sim \pi]$ using a general formula involving \mathbb{P} .
- (c) Bound $\rho_{s,f}$ for the single-flip update sampler for the Ising model with $\beta = 0$. Hint: every flip is accepted, and the eigenvectors are $f_{\mathsf{S}}(\boldsymbol{\sigma}) = (-1)^{\sum_{i \in \mathsf{S}} \mathbb{1}\{\sigma_i = +1\}}$.
- (d) Bound $\rho_{s,f}$ for the autoregressive process $X_t = \sqrt{1-\alpha}X_{t-1} + \sqrt{\alpha}Z_t$ where $Z_t \sim \mathcal{N}(0,1)$.
- (e) If kernels p and q satisfy detailed balance with the same stationary distribution and $q(x, dy) \ge p(x, dy)$ for all $x \ne y$, show that q gives smaller correlations $\rho_{f,1}$ for all f (Peskun ordering).

7 Math (uncountable ergodic theorem).

To complete the proof of the uncountable ergodic theorem, fill in the missing steps 2(a)-(b).

1. We assume a one-step minorization condition

$$p(x, dy) \ge \delta \mu(dy), \quad x \in \mathsf{A},$$

involving a "small" set $A \in \mathcal{X}$, a constant $\delta > 0$, and a probability measure μ . This allows us to construct a split-chain $X'_t = (X_t, R_t)$ with transition probabilities

$$\begin{cases} q((x,r),(dy,0)) = p(x,dy), & x \notin A, \\ q((x,r),(dy,0)) = p(x,dy) - \delta\mu(dy), & x \in A, \\ q((x,r),(dy,1)) = \mu(dy), & x \in A. \end{cases}$$

2. We define renewal times for the split chain as

$$t_1 = \min\{t > 0 : R_t = 1\}, \quad t_i = \min\{t_i > t_{i+1} : R_t = 1\}.$$

We then assume a Foster-Lyapunov drift criterion

$$\int p(x, dy) V(y) \le (1 - \lambda) V(x) \mathbb{1}\{x \in \mathsf{A}\} + b \mathbb{1}\{x \notin \mathsf{A}\}$$

for a function $V : \mathcal{X} \mapsto [1, \infty)$ and constants $\lambda > 0$ and b > 0.

- (a) Using the drift criterion, prove that each $t_i < \infty$.
- (b) Using the drift criterion, prove that $\mu = \mathbb{E}[t_1|X_0 \sim \mu, R_0 = 1] < \infty$. Hint: first show

$$\frac{\delta\lambda}{b} \le \liminf_{t\to\infty} \frac{1}{t} \sum_{s=1}^t \mathbb{P}\{R_s = 1\}.$$

Then set $N_t = \sum_{s=1}^t \mathbb{1}\{R_s = 1\}$ and argue using the strong law of large numbers that $\lim_{t\to\infty} N_t/t = 1/\mu$ and consequently $\lim_{t\to\infty} \mathbb{E}[N_t]/t = 1/\mu$.

3. For any bounded f, we conclude that the segments $\sum_{t=t_i}^{t_{i+1}} f(X_t)$ are iid with finite mean and

$$\frac{1}{T} \sum_{t=0}^{T-1} f(X_t) \xrightarrow{T \to \infty} \frac{1}{\mu} \mathbb{E} \left[\sum_{t=0}^{t_1-1} f(X_t) \, \middle| \, X_0 \sim \mu \right].$$