
ACM 206 Problem Set 6 May 11, 2023

1 Coding (MCMC for a Gaussian).

Design a Metropolis-Hastings sampler for the N (0, 1) distribution based on local perturbations.
Does the sampler give convergent estimates of E[Z |Z ∼ N (0, 1)]? What can you do to optimize?

2 Coding (MCMC for two Gaussians).

Design a Metropolis-Hastings sampler for a mixture of two Gaussians: 1
2N (−2, 1)+ 1

2N (2, 1). Check
that the sampler gives convergent estimates of the mean. What can you do to optimize?

3 Coding (MCMC error bars).

Evaluate the bias and the variance of an MCMC estimate. Which is bigger?

4 Choose-your-own-adventure (MCMC for many Gaussians).

Consider the Gaussian random field Z = (Z1, . . . , ZN )T with density

π(z) =
1

Zβ
exp

(
−β

2

∑
i∼j

(zi − zj)
2

)
.

The summation runs over neighbors i ∼ j, e.g., |i− j| = 1 for the 1-d chain with an open boundary.

(a) Write down an exact sampler for the 1-d chain that samples Z1, then Z2, then Z3, etc.

(b) Write down a Gibbs sampler that updates Zi by sampling from π(·|Zj , j ̸= i).

(c) Write down a Gibbs sampler that updates Zi ← Zi+δ for all i in a block S of variables. Hint:
the density of δ only depends on Zj for j /∈ S and the acceptance probability is 1.

5 Choose-your-own-adventure (independence sampler).

Consider an ”independence” sampler for the density π where we propose a random transition
X → Y , with Y randomly drawn from the density g(y) independent of the starting point X.

(a) Write down a general formula for the acceptance probabilities.

(b) Write down a formula for the acceptance probabilities when the target is a Gaussian Z ∼
N (0, 1) conditional on Z > 10 and we propose Y ∼ N (10, 1).

(c) Identify the “small” sets that satisfy the one-step minorization condition. If the whole space
X is a small set, write down a simple geometric bound on ρs,f = Corr[f(X0), f(Xs)|X0 ∼ π].
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6 Math (Spectral computations).

(a) Assume detailed balance, π(dx)p(x, dy) = π(dy)p(y, dx) for all x, y ∈ X , and show that the
forward operator [Pf ](x) =

∫
p(x, dy)f(y) is self-adjoint in L2(π).

(b) Bound ρs,f = Corr[f(X0), f(Xs)|X0 ∼ π] using a general formula involving P.

(c) Bound ρs,f for the single-flip update sampler for the Ising model with β = 0. Hint: every flip
is accepted, and the eigenvectors are fS(σ) = (−1)

∑
i∈S 1{σi=+1}.

(d) Bound ρs,f for the autoregressive process Xt =
√
1− αXt−1 +

√
αZt where Zt ∼ N (0, 1).

(e) If kernels p and q satisfy detailed balance with the same stationary distribution and q(x, dy) ≥
p(x, dy) for all x ̸= y, show that q gives smaller correlations ρf,1 for all f (Peskun ordering).

7 Math (uncountable ergodic theorem).

To complete the proof of the uncountable ergodic theorem, fill in the missing steps 2(a)-(b).

1. We assume a one-step minorization condition

p(x, dy) ≥ δµ(dy), x ∈ A,

involving a “small” set A ∈ X , a constant δ > 0, and a probability measure µ. This allows us
to construct a split-chain X ′

t = (Xt, Rt) with transition probabilities
q((x, r), (dy, 0)) = p(x, dy), x /∈ A,

q((x, r), (dy, 0)) = p(x, dy)− δµ(dy), x ∈ A,

q((x, r), (dy, 1)) = µ(dy), x ∈ A.

2. We define renewal times for the split chain as

t1 = min{t > 0 : Rt = 1}, ti = min{ti > ti+1 : Rt = 1}.
We then assume a Foster-Lyapunov drift criterion∫

p(x, dy)V (y) ≤ (1− λ)V (x)1{x ∈ A}+ b1{x /∈ A}

for a function V : X 7→ [1,∞) and constants λ > 0 and b > 0.

(a) Using the drift criterion, prove that each ti <∞.

(b) Using the drift criterion, prove that µ = E[t1|X0 ∼ µ,R0 = 1] <∞. Hint: first show

δλ

b
≤ lim inf

t→∞

1

t

t∑
s=1

P{Rs = 1}.

Then set Nt =
∑t

s=1 1{Rs = 1} and argue using the strong law of large numbers that
limt→∞ Nt/t = 1/µ and consequently limt→∞ E[Nt]/t = 1/µ.

3. For any bounded f , we conclude that the segments
∑ti+1

t=ti
f(Xt) are iid with finite mean and

1

T

∑T−1

t=0
f(Xt)

T→∞→ 1

µ
E
[∑t1−1

t=0
f(Xt)

∣∣∣∣X0 ∼ µ

]
.
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