
ACM 206 Problem Set 5 May 4, 2023

1 Coding (Poisson sampling).

Design a Metropolis sampler that targets the Pois(λ) distribution on the nonnegative integers
{0, 1, 2, . . .}, which has probability mass function p(x) = e−λλk/k!. Implement your sampler with
λ = 3, 5, 7. How well does it work?

2 Coding (Metropolis versus exact sampling).

Implement the exact and single-flip Metropolis samplers for the 1-d Ising model with open boundary
conditions. Which sampler works best?

3 Coding (2-d Ising sampling).

Implement the Swendsen-Wang and Wolff samplers for the 2-d Ising model with open boundary
conditions. Which sampler works best?

4 Choose-your-own-adventure (Conditional Ising sampling).

Design a Metropolis sampler for the conditional Ising model p
(
x |

∑
i xi = 0

)
.

5 Choose-your-own-adventure (Hot and cold temperatures).

Write down the limits of the single-flip Metropolis sampler, the Swendsen-Wang sampler, and the
Wolff sampler as β ↓ 0 (infinite temperature) or β ↑ ∞ (zero temperature). Which samplers are
the best and the worst?

6 Math (Potts model).

The Potts model is a generalization of the Ising model in which each spin can take q ≥ 2 distinct
states xi ∈ {1, 2, . . . , q}. The probability mass function is

p(x) =
1

Zβ
exp

(
β
∑

i∼j
δ(xi − xj)

)
, Zβ =

∑
y
exp

(
β
∑

i∼j
δ(yi − yj)

)
.

Write down the generalizations of the single-flip Metropolis, Swendsen-Wang and Wolff samplers for
the Potts model. Derive an exact sampler for the 1-d Potts model with open boundary conditions.

7 Math (Converse to Markov chain ergodic theorem).

In class, we showed if x is a positive recurrent state (a state x satisfying E[τx |X0 = x] < ∞ where
τx = min{t > 0 : Xt = x} is called positive recurrent), there is a unique stationary measure π (a
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measure satisfying π(i) =
∑

j π(j)p(j, i) is called stationary) such that the Markov chain started
from X0 = x satisfies

1

T

T−1∑
t=0

f(Xt)
T→∞→

∑
i

π(i)f(i)

for any bounded function f .

Here, we prove a partial converse. Assume the Markov chain admits a finite stationary measure π.
Then, prove that every state x for which π(x) > 0 is positive recurrent.

(Hint: if µ is a nonnegative vector satisfying µ(x) = 1 and µ(i) =
∑

j µ(j)p(j, i) for i ̸= x, show

that µ(i) ≥
∑∞

t=0 P{Xt = i, τx > t |X0 = x} for all i.)

8 Math (Communicating classes).

(a) We say that a communicates with b and write a ↔ b if
∑∞

t=0 pt(a, b) > 0 and
∑∞

t=0 pt(b, a) > 0.
Prove that communication is an equivalence class (it is reflexive, symmetric, and transitive).

(b) For each state i, define the first passage time τi = min{t > 0 : Xt = i}. We say that
i is transient if P{τi < ∞|X0 = i} < 1 and recurrent if P{τi < ∞|X0 = i} = 1. We
say that a recurrent state i is null recurrent if E[τi |X0 = i] = ∞ and positive recurrent if
E[τi |X0 = i] < ∞. Give examples of transience, null recurrence, and positive recurrence.

(c) Prove that transience, null recurrence, and positive recurrence are class properties, i.e., one
of these properties must be true for every state in a communicating class.

(d) Prove that each recurrent communicating class C is absorbing, i.e., pt(i,C) = 0 for all t ≥ 0
and i ∈ C.

(e) Prove that each recurrent communicating class C on a finite state space is positive recurrent.

(f) Prove that there exists a unique stationary measure π for each positive recurrent communi-
cating class C, and it satisfies the formula π(i) = 1/E[τi |X0 = i] > 0 for each i ∈ C.
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