
ACM 206 Problem Set 4 April 27, 2023

1 Coding (Ranking of the pages).

(a) Solve a PageRank problem with Monte Carlo and make a performance plot.

(b) Solve a PageRank problem with Richardson iteration x = αPx + (1 − α)v and make a
performance plot.

2 Coding (Diffusing around).

Use Monte Carlo to solve an elliptic boundary value problem like the one presented in class. You
do not need to solve the problem globally, just approximate the solution as well as you can at a
single interior point.

3 Coding (How long can you avoid yourself?).

(a) Simulate self-avoiding walks by using any method. How long can you go? What is your best
estimate for the number of self-avoiding walks?

(b) Simulate self-avoiding walks by using Rob’s favorite method: the Rosenbluth & Rosenbluth
method with resampling at every 10th time step. Now how long can you go? What is your
best estimate for the number of self-avoiding walks?

4 Choose-your-own-adventure (Lemmings revisited).

What is the probability that a lemming, starting at rung 1 of a 50 rung ladder, will make it to the
top before falling to the ground? Recall that a lemming has a half chance of climbing to a higher
run and a half chance of falling to the ground (rung 0), and these probabilities remain the same
for all the rungs. Write down a clever Monte Carlo scheme to find the answer, and potentially
implement it.

5 Math (Counting SAWs)

.
Recall that Zt is the number of self-avoiding walks (SAWs) of length t. Prove that limt→∞ logZt/t
exists, and prove the best error bounds you can obtain.

6 Math (Matrix inversion error bounds).

In class (and in the notes) we derived a general variance bound E∥x−x̂∥2 ≤ ∥b∥21 Eτ2 for the Monte
Carlo matrix inversion method. Let’s refine this bound for particular problems.

(a) What is the best variance bound for Monte Carlo applied to the elliptic boundary value
problem? Your answer should only depend on the norm ∥f∥∞ for the boundary data and the
number of particles N .

(b) What is the best variance bound for Monte Carlo applied to the PageRank problem?
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7 Math (Optimal rare event sampling).

Consider the forward flux sampling scheme described in class and in the notes. We want to calculate
the probability that a standard Brownian Motion (Xt)t≥0 starting from X0 = 0 hits a high value
Xt = K before hitting Xt = −1. We introduce a sequence of thresholds 0 = λ0 < λ1 < · < λL = K.
We run an ensemble of N independent Brownian motions starting from each threshold λi until
hitting the next threshold λi+1 or hitting −1, and let Ni+1 denote the number of successes. Last,
we estimate P{Xt = N before Xt = −1} using the product p̂ = N1N2 · · ·NL/N

L.

Write down the variance for this method and compute the optimal thresholds (Hint: use the fact that
a Brownian motion starting from Xt = 0 hits +A before hitting −B with probability B/(A+B)).
What is the best variance as we take L → ∞?

Partial solution: Using the hint, the solution to the problem is

p = P{Xt = K before Xt = −1 |X0 = 0} =
1

K + 1
.

Next, we define the probability of making it from threshold λi to threshold λi+1 before falling to
the level −1:

pi = P{Xt = λi+1 before Xt = −1 |X0 = λi} =
λi + 1

λi+1 + 1
.

We observe that each Ni is binomially distributed with mean Npi and variance Npi(1−pi). Hence,
we compute

E p̂ =

L∏
i=1

pi = p, E |p̂|2 =

L∏
i=1

p2i

(
1 +

1/pi − 1

N

)
= p2

L∏
i=1

(
1 +

1/pi − 1

N

)
.

The variance for the method is

p2
L∏

i=1

(
1 +

1/pi − 1

N

)
− p2.

To optimize the thresholds, we set νi = log(1/pi) for 1 ≤ i ≤ L. We need to find νi values that
minimize

L∏
i=1

(
1 +

eνi − 1

N

)
or equivalently minimize the function

f(ν1, . . . , νL) =

L∑
i=1

log

(
1 +

eνi − 1

N

)
=

L∑
i=1

(
log(N − 1 + eνi)− logN

)
.

We also need to enforce the constraints that each νi ≥ 0 and
∑L

i=1 νi = log(K + 1). We explicitly
calculate

∂2
νiνi

f(ν1, . . . , νL) = ∂2
νiνi

log(N − 1 + eνi) = ∂νi

(
eνi

N − 1 + eνi

)
=

(N − 1)eνi

(N − 1 + eνi)2
> 0
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and ∂2
νiνj

f(ν1, . . . , νL) = 0 for i ̸= j. Therefore, the second derivative matrix ∇2f(ν1, . . . , νL) is
positive definite, so f is convex. We are minimizing a convex function, symmetric in all of its
inputs, subject to linear constraints. The solution is to set all the inputs equal to one another.
Consequently, we find that each pi = (K + 1)−1/L and

λi = (K + 1)i/L − 1, i = 0, 1, . . . , L.

The resulting variance of forward flux sampling is

p2
[(

1 +
(K + 1)1/L − 1

N

)L

− 1

]
.

Taking L → ∞, we find that

p2
[(

1 +
(K + 1)1/L − 1

N

)L

− 1

]
↓ p2

[
(K + 1)1/N − 1

]
≥ p2

log(K + 1)

N
.

We can never escape from the fundamental O(1/N) Monte Carlo variance scaling. Yet, we can do
much better than the direct Monte Carlo simulation strategy, which gives variance

p(1− p)

N
= p2

1/(K + 1)− 1

N
.

3


