
ACM 206 Problem Set 3 April 20, 2023

1 Coding (Jump up and down and move it all around).

How long does it take for a fractional Brownian motion (Wt)t≥0 to hit the level Wt = 1? Make a
histogram of first passage times for H = 1/4, H = 1/2, and H = 3/4 and compare.

2 Choose-your-own-adventure (Lemmings problem).

Let’s use a CTMC to model lemmings (characters from a 1990s video game) climbing up and falling
down a ladder. The system has states {0, 1, 2, . . . , 10}, which correspond to the ground level and the
ten rungs of the ladder. A lemming at level i climbs up the ladder with a rate 1 for i = 0, 1, . . . , 9.
A lemming at level i falls to the ground with a rate 1 for i = 1, 2, . . . , 9. What is the expected time
to reach the top starting from the ground? Run a simulation or solve analytically.

Partial solution. Set N = 10 and h(i) = E[τN |X0 = i], where τN = min{t ≥ 0 : Xt = N} is the
first time to hit Xt = N . Then, introduce the rate matrix Q and use the definition of a CTMC to
argue for 1 ≤ i ≤ N − 1

h(i) = E[τN |X0 = i]

=

N∑
j=0

E[τN |X∆ = j,X0 = i]P{X∆ = j|X0 = j}

=

N∑
j=0

E[τN |X∆ = j,X0 = i](δij +∆Qij +O(∆2))

We also calculate {
E[τN |X∆ = j,X0 = i] = ∆ + h(j), 1 ≤ j ≤ N − 1,

E[τN |X∆ = N,X0 = i] ≤ ∆,

whence

h(i) = h(i) + ∆ +∆

N∑
j=0

Qijh(j) +O(∆2).

Dividing by ∆ and taking ∆→ 0, we arrive at

0 = 1 +

N∑
j=0

Qijh(j) = 1 + h(0)− 2h(i) + h(i+ 1)

and by rearrangement

h(i+ 1) = 2h(i)− h(0)− 1

= 4h(i− 1)− (2 + 1)(h(0) + 1)

= · · ·
= 2i+1h(0)− (2i + · · ·+ 2 + 1)(h(0) + 1) = h(0)− (2i+1 − 1).

Observing h(N) = 0, we obtain the solution h(i) = 2N − 2i and the expected hitting time is
h(0) = 210 − 1 = 1023.
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3 Choose-your-own-adventure (Brownian motion).

What is the probability that a Brownian motion (Wt)t≥0 hits Wt = +10 before Wt = −1? What is
the expected time for Wt to hit one of the two boundaries? Run a simulation or solve analytically.

4 Coding (Michaelis-Menten model).

Let’s simulate a CTMC representing four types of molecules in a solvent. We start with x1 = 300
substrate molecules and x2 = 100 enzyme molecules, and we represent the system as a vector
X = (300, 100, 0, 0)T . With rate k1 = 2 × 10−4X1X2, an enzyme binds with a substrate to form
an enzyme-substrate complex; X ← X + (−1,−1, 1, 0)T . With rate k2 = 10−4X2, an enzyme-
substrate complex dissociates back into an enzyme and a substrate; X ← X + (1, 1,−1, 0)T .
With rate k3 = 10−3X3, an enzyme-substrate complex forms a product (an altered enzyme) and a
substrate; X ←X + (0, 1,−1, 1)T . Plot the number of substrate and product molecules over time.

5 Choose-your-own-adventure (Karhunen-Loéve)

(a) One way to approximate a Brownian motion (Wt)0≤t≤1 is to linearly interpolate between
the time points t = 0, 1/N, 2/N, . . . , 1 − 1/N, 1. What is the mean square error in this
approximation? Calculate the error on a computer or analytically.

(b) Another way approximate a Brownian motion is to evaluate the coefficients

⟨ei,W ⟩ =
∫ 1

0

ei(t)Wt dt, ei(t) =
√
2 sin

((
i− 1/2

)
πt
)
,

and approximate Ŵ =
∑N

i=1⟨ei,W ⟩ei. What is the mean square error in this approximation?

6 Math (Divergence of Euler scheme).

Consider the Euler scheme for solving the SDE dX = X dW with initial condition X0 = 1, where
(Wt)t≥0 is a fractional Brownian motion.

(a) Show that the approximation from Euler’s scheme

X̂i∆ = X̂(i−1)∆ + X̂(i−1)∆(Wi∆ −W(i−1)∆).

can be written

X̂T = exp

(∑T/∆

i=1
log

(
1 +Wi∆ −W(i−1)∆

))
.

(b) Applying a Taylor series expansion to part (a), argue that

X̂T = exp

(∑T/∆

i=1

[
Wi∆ −W(i−1)∆ − 1

2

(
Wi∆ −W(i−1)∆

)2
+ · · ·

])
.

Identify the limit as ∆→ 0 and the rate of convergence for different values of H ∈ (0, 1) (hint:
use the law of large numbers and the central limit theorem). Note there are other non-Euler
schemes that converge faster (Hu, Liu, & Nualart, 2016).
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Partial solution. We observe that

1

T/∆

T/∆∑
i=1

(
Wi∆ −W(i−1)∆

∆H

)2

is a sample average of stationary, decorrelating mean-one random variables, and the weak law of
large numbers (e.g., Shao, 1995) guarantees

1

T/∆

T/∆∑
i=1

(
Wi∆ −W(i−1)∆

∆H

)2

= 1 + op(1) (1)

and consequently
T/∆∑
i=1

(
Wi∆ −W(i−1)∆

)2
= T∆2H−1(1 + op(1))

as ∆→ 0. By examining this expression, we can immediately guarante{
X̂ → eW at a rate ∆2H−1 if H > 1/2,

X̂ → 0 if H < 1/2.

The remaining H = 1/2 case is the subtlest. In this case, we observe the increments Wi∆−W(i−1)∆

are independent, and they have second moment ∆ and fourth moment 3∆2, which implies a central
limit theorem

1√
T/∆

T/∆∑
i=1

[(
Wi∆ −W(i−1)∆

∆1/2

)2

− 1

]
D→ N (0, 2).

Consequently, we can sharpen (1) to yield

1

T/∆

T/∆∑
i=1

(
Wi∆ −W(i−1)∆

∆1/2

)2

= 1 +Op(∆
1/2)

and consequently
T/∆∑
i=1

(
Wi∆ −W(i−1)∆

)2
= T +Op(∆

1/2)

as ∆→ 0. We conclude 
X̂ → eW at a rate ∆2H−1 if H > 1/2,

X̂ → eW−t/2 at a rate ∆1/2 if H = 1/2,

X̂ → 0 if H < 1/2.

To make this Taylor series expansion rigorous, make sure to treat the second order term as the
remainder term for H ̸= 1/2 and treat the fourth order term as the remainder term for H = 1/2.
We can talk about how to do this during office hours but warning: it’s technical stuff.
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7 Math (Convergence of Euler scheme).

Consider the Euler scheme for solving the SDE dX = −X dt+ dW with initial condition X0 = 0,
where (Wt)t≥0 is a fractional Brownian motion.

(a) Show that the approximation from Euler’s scheme

X̂i∆ = X̂(i−1)∆ −∆X̂(i−1)∆ +Wi∆ −W(i−1)∆.

can be written

X̂T =
∑T/∆

i=1
(1−∆)T/∆−i

(
Wi∆ −W(i−1)∆

)
.

Turning sums into integrals, write down the limit as ∆→ 0.

(b) Compare the Euler’s scheme solution with mesh size ∆ and mesh size ∆/2. Show the difference
is a mean-zero Gaussian random variable and bound the variance in terms of ∆ and H (hint:
covariances among fractional Gaussian noise increments are negative for H < 1/2, positive for
H > 1/2). What is the convergence rate of Euler’s scheme? For more insights, see Butkovsky,
Dareiotis, & Gerencsér (2021) and Huang & Wang (2023).

8 Math (Making sense of SDEs).

Consider the SDE dX = b(X) dt+σ(X) dW , with initial condition X0 = x0, where (Wt)t≥0 is a
fractional Brownian motion. For appropriate drift functions b, diffusion functions σ, and Hurst
parameters H ∈ (0, 1), we can sometimes establish existence and uniqueness using Picard iteration:

X̂(i)(t) = x0 +

∫ t

0

b(X̂(i−1)
s ) ds+

∫ t

0

σ(X̂(i−1)
s ) dWs, X̂(0)(t) = x0.

When does this work? When does this fail? Hint: start with the case of constant σ and use
Gronwall’s inequality.
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