1 Coding (Jump up and down and move it all around).

How long does it take for a fractional Brownian motion $\left(W_{t}\right)_{t \geq 0}$ to hit the level $W_{t}=1$? Make a histogram of first passage times for $H=1 / 4, H=1 / 2$, and $H=3 / 4$ and compare.

2 Choose-your-own-adventure (Lemmings problem).

Let's use a CTMC to model lemmings (characters from a 1990s video game) climbing up and falling down a ladder. The system has states $\{0,1,2, \ldots, 10\}$, which correspond to the ground level and the ten rungs of the ladder. A lemming at level i climbs up the ladder with a rate 1 for $i=0,1, \ldots, 9$. A lemming at level i falls to the ground with a rate 1 for $i=1,2, \ldots, 9$. What is the expected time to reach the top starting from the ground? Run a simulation or solve analytically.

Partial solution. Set $N=10$ and $h(i)=\mathbb{E}\left[\tau_{N} \mid X_{0}=i\right]$, where $\tau_{N}=\min \left\{t \geq 0: X_{t}=N\right\}$ is the first time to hit $X_{t}=N$. Then, introduce the rate matrix \mathbb{Q} and use the definition of a CTMC to argue for $1 \leq i \leq N-1$

$$
\begin{aligned}
h(i) & =\mathbb{E}\left[\tau_{N} \mid X_{0}=i\right] \\
& =\sum_{j=0}^{N} \mathbb{E}\left[\tau_{N} \mid X_{\Delta}=j, X_{0}=i\right] \mathbb{P}\left\{X_{\Delta}=j \mid X_{0}=j\right\} \\
& =\sum_{j=0}^{N} \mathbb{E}\left[\tau_{N} \mid X_{\Delta}=j, X_{0}=i\right]\left(\delta_{i j}+\Delta \mathbb{Q}_{i j}+\mathcal{O}\left(\Delta^{2}\right)\right)
\end{aligned}
$$

We also calculate

$$
\left\{\begin{array}{l}
\mathbb{E}\left[\tau_{N} \mid X_{\Delta}=j, X_{0}=i\right]=\Delta+h(j), \quad 1 \leq j \leq N-1 \\
\mathbb{E}\left[\tau_{N} \mid X_{\Delta}=N, X_{0}=i\right] \leq \Delta
\end{array}\right.
$$

whence

$$
h(i)=h(i)+\Delta+\Delta \sum_{j=0}^{N} \mathbb{Q}_{i j} h(j)+\mathcal{O}\left(\Delta^{2}\right)
$$

Dividing by Δ and taking $\Delta \rightarrow 0$, we arrive at

$$
0=1+\sum_{j=0}^{N} \mathbb{Q}_{i j} h(j)=1+h(0)-2 h(i)+h(i+1)
$$

and by rearrangement

$$
\begin{aligned}
h(i+1) & =2 h(i)-h(0)-1 \\
& =4 h(i-1)-(2+1)(h(0)+1) \\
& =\cdots \\
& =2^{i+1} h(0)-\left(2^{i}+\cdots+2+1\right)(h(0)+1)=h(0)-\left(2^{i+1}-1\right)
\end{aligned}
$$

Observing $h(N)=0$, we obtain the solution $h(i)=2^{N}-2^{i}$ and the expected hitting time is $h(0)=2^{10}-1=1023$.

3 Choose-your-own-adventure (Brownian motion).

What is the probability that a Brownian motion $\left(W_{t}\right)_{t \geq 0}$ hits $W_{t}=+10$ before $W_{t}=-1$? What is the expected time for W_{t} to hit one of the two boundaries? Run a simulation or solve analytically.

4 Coding (Michaelis-Menten model).

Let's simulate a CTMC representing four types of molecules in a solvent. We start with $x_{1}=300$ substrate molecules and $x_{2}=100$ enzyme molecules, and we represent the system as a vector $\boldsymbol{X}=(300,100,0,0)^{T}$. With rate $k_{1}=2 \times 10^{-4} X_{1} X_{2}$, an enzyme binds with a substrate to form an enzyme-substrate complex; $\boldsymbol{X} \leftarrow \boldsymbol{X}+(-1,-1,1,0)^{T}$. With rate $k_{2}=10^{-4} X_{2}$, an enzymesubstrate complex dissociates back into an enzyme and a substrate; $\boldsymbol{X} \leftarrow \boldsymbol{X}+(1,1,-1,0)^{T}$. With rate $k_{3}=10^{-3} X_{3}$, an enzyme-substrate complex forms a product (an altered enzyme) and a substrate; $\boldsymbol{X} \leftarrow \boldsymbol{X}+(0,1,-1,1)^{T}$. Plot the number of substrate and product molecules over time.

5 Choose-your-own-adventure (Karhunen-Loéve)

(a) One way to approximate a Brownian motion $\left(W_{t}\right)_{0 \leq t \leq 1}$ is to linearly interpolate between the time points $t=0,1 / N, 2 / N, \ldots, 1-1 / N, 1$. What is the mean square error in this approximation? Calculate the error on a computer or analytically.
(b) Another way approximate a Brownian motion is to evaluate the coefficients

$$
\left\langle e_{i}, W\right\rangle=\int_{0}^{1} e_{i}(t) W_{t} d t, \quad e_{i}(t)=\sqrt{2} \sin ((i-1 / 2) \pi t)
$$

and approximate $\hat{W}=\sum_{i=1}^{N}\left\langle e_{i}, W\right\rangle e_{i}$. What is the mean square error in this approximation?

6 Math (Divergence of Euler scheme).

Consider the Euler scheme for solving the SDE $d X=X d W$ with initial condition $X_{0}=1$, where $\left(W_{t}\right)_{t \geq 0}$ is a fractional Brownian motion.
(a) Show that the approximation from Euler's scheme

$$
\hat{X}_{i \Delta}=\hat{X}_{(i-1) \Delta}+\hat{X}_{(i-1) \Delta}\left(W_{i \Delta}-W_{(i-1) \Delta}\right)
$$

can be written

$$
\hat{X}_{T}=\exp \left(\sum_{i=1}^{T / \Delta} \log \left(1+W_{i \Delta}-W_{(i-1) \Delta}\right)\right)
$$

(b) Applying a Taylor series expansion to part (a), argue that

$$
\hat{X}_{T}=\exp \left(\sum_{i=1}^{T / \Delta}\left[W_{i \Delta}-W_{(i-1) \Delta}-\frac{1}{2}\left(W_{i \Delta}-W_{(i-1) \Delta}\right)^{2}+\cdots\right]\right)
$$

Identify the limit as $\Delta \rightarrow 0$ and the rate of convergence for different values of $H \in(0,1)$ (hint: use the law of large numbers and the central limit theorem). Note there are other non-Euler schemes that converge faster (Hu, Liu, \& Nualart, 2016).

Partial solution. We observe that

$$
\frac{1}{T / \Delta} \sum_{i=1}^{T / \Delta}\left(\frac{W_{i \Delta}-W_{(i-1) \Delta}}{\Delta^{H}}\right)^{2}
$$

is a sample average of stationary, decorrelating mean-one random variables, and the weak law of large numbers (e.g., Shao, 1995) guarantees

$$
\begin{equation*}
\frac{1}{T / \Delta} \sum_{i=1}^{T / \Delta}\left(\frac{W_{i \Delta}-W_{(i-1) \Delta}}{\Delta^{H}}\right)^{2}=1+o_{p}(1) \tag{1}
\end{equation*}
$$

and consequently

$$
\sum_{i=1}^{T / \Delta}\left(W_{i \Delta}-W_{(i-1) \Delta}\right)^{2}=T \Delta^{2 H-1}\left(1+o_{p}(1)\right)
$$

as $\Delta \rightarrow 0$. By examining this expression, we can immediately guarante

$$
\begin{cases}\hat{X} \rightarrow e^{W} & \text { at a rate } \Delta^{2 H-1} \text { if } H>1 / 2 \\ \hat{X} \rightarrow 0 & \text { if } H<1 / 2\end{cases}
$$

The remaining $H=1 / 2$ case is the subtlest. In this case, we observe the increments $W_{i \Delta}-W_{(i-1) \Delta}$ are independent, and they have second moment Δ and fourth moment $3 \Delta^{2}$, which implies a central limit theorem

$$
\frac{1}{\sqrt{T / \Delta}} \sum_{i=1}^{T / \Delta}\left[\left(\frac{W_{i \Delta}-W_{(i-1) \Delta}}{\Delta^{1 / 2}}\right)^{2}-1\right] \xrightarrow{\mathcal{D}} \mathcal{N}(0,2)
$$

Consequently, we can sharpen (1) to yield

$$
\frac{1}{T / \Delta} \sum_{i=1}^{T / \Delta}\left(\frac{W_{i \Delta}-W_{(i-1) \Delta}}{\Delta^{1 / 2}}\right)^{2}=1+O_{p}\left(\Delta^{1 / 2}\right)
$$

and consequently

$$
\sum_{i=1}^{T / \Delta}\left(W_{i \Delta}-W_{(i-1) \Delta}\right)^{2}=T+O_{p}\left(\Delta^{1 / 2}\right)
$$

as $\Delta \rightarrow 0$. We conclude

$$
\begin{cases}\hat{X} \rightarrow e^{W} & \text { at a rate } \Delta^{2 H-1} \text { if } H>1 / 2 \\ \hat{X} \rightarrow e^{W-t / 2} & \text { at a rate } \Delta^{1 / 2} \text { if } H=1 / 2 \\ \hat{X} \rightarrow 0 & \text { if } H<1 / 2\end{cases}
$$

To make this Taylor series expansion rigorous, make sure to treat the second order term as the remainder term for $H \neq 1 / 2$ and treat the fourth order term as the remainder term for $H=1 / 2$. We can talk about how to do this during office hours but warning: it's technical stuff.

7 Math (Convergence of Euler scheme).

Consider the Euler scheme for solving the SDE $d X=-X d t+d W$ with initial condition $X_{0}=0$, where $\left(W_{t}\right)_{t \geq 0}$ is a fractional Brownian motion.
(a) Show that the approximation from Euler's scheme

$$
\hat{X}_{i \Delta}=\hat{X}_{(i-1) \Delta}-\Delta \hat{X}_{(i-1) \Delta}+W_{i \Delta}-W_{(i-1) \Delta}
$$

can be written

$$
\hat{X}_{T}=\sum_{i=1}^{T / \Delta}(1-\Delta)^{T / \Delta-i}\left(W_{i \Delta}-W_{(i-1) \Delta}\right)
$$

Turning sums into integrals, write down the limit as $\Delta \rightarrow 0$.
(b) Compare the Euler's scheme solution with mesh size Δ and mesh size $\Delta / 2$. Show the difference is a mean-zero Gaussian random variable and bound the variance in terms of Δ and H (hint: covariances among fractional Gaussian noise increments are negative for $H<1 / 2$, positive for $H>1 / 2)$. What is the convergence rate of Euler's scheme? For more insights, see Butkovsky, Dareiotis, \& Gerencsér (2021) and Huang \& Wang (2023).

8 Math (Making sense of SDEs).

Consider the $\operatorname{SDE} d X=b(X) d t+\sigma(X) d W$, with initial condition $X_{0}=x_{0}$, where $\left(W_{t}\right)_{t \geq 0}$ is a fractional Brownian motion. For appropriate drift functions b, diffusion functions σ, and Hurst parameters $H \in(0,1)$, we can sometimes establish existence and uniqueness using Picard iteration:

$$
\hat{X}^{(i)}(t)=x_{0}+\int_{0}^{t} b\left(\hat{X}_{s}^{(i-1)}\right) d s+\int_{0}^{t} \sigma\left(\hat{X}_{s}^{(i-1)}\right) d W_{s}, \quad \hat{X}^{(0)}(t)=x_{0}
$$

When does this work? When does this fail? Hint: start with the case of constant σ and use Gronwall's inequality.

