
ACM 206 Problem Set 2 April 13, 2023

1 Choose-your-own-adventure (1-d Ising model).

The Ising model is a spatial process on the 1-d lattice, inspired by ferromagnets in chemistry. There
are N spins denoted X = (X1, . . . , XN ), and each spin is assigned either Xi = −1 or Xi = +1.
Assuming “free” boundary conditions, the probability mass function for vectors X is

p(x) =
1

Zβ
exp

(
β
∑N−1

i=1
xixi+1

)
, Zβ =

∑
x∈{−1,+1}N

exp
(
β
∑N−1

i=1
xixi+1

)
,

where β > 0 is the inverse temperature parameter.

(a) There is an exact sampler for the 1-d Ising model. First, define functions V1(x1) = 1 and
Vt+1(xt+1) =

∑
xt∈{−1,+1} Vt(xt) exp(βxtxt+1) for t = 1, . . . , N−1 and calculate the partition

function Zβ =
∑

xN∈{−1,+1} VN (xN ). Next, sample the last spin XN from the distribution

pN (xN ) = VN (xN )/Z, and recursively sample each spin Xt−1 from the distribution

pt−1(xt−1) =
Vt−1(xt−1) exp(βxt−1Xt)∑

yt−1∈{−1,+1} Vt−1(yt−1) exp(βyt−1Xt)

for t = N,N − 1, . . . , 2. Try this on a computer, or write down a simple analytic formula.

(b) Use part (a) to calculate the correlation function C(t) = E
[
X0Xt

]
. How does the correlation

function change as we increase β?

2 Choose-your-own-adventure (1-d Gaussian random field).

Consider a Gaussian random field on the 1-d lattice. There are N random variables denoted
X = (X1, . . . , XN ), and we assume X ∼ N (0,Σ) has a multivariate Gaussian distribution.

(a) The first sampling method is to calculate a square root decomposition Σ = AA∗ (e.g.,
by Cholesky decomposition) and set X = AZ where Z = (Z1, . . . , ZN ) are independent
standard Gaussians. Write down or code up how to do this for the moving average process
with covariance matrix Σij = 1/10max{min{i, j, 10− |i− j|}, 0}.

(b) The second sampling method is to take a square root decomposition of the inverse covariance
Σ−1 = BB∗ and solve the linear system BX = Z, where Z = (Z1, . . . , ZN ) are independent
standard Gaussians. Write down or code up how to do this for the autoregressive process
with covariance matrix Σi,j = (9/10)|i−j|. What differences do you see between the moving
average and autoregressive processes?

3 Coding (Poisson point process).

Consider two strategies for sampling from a Poisson point process on the unit square E = [0, 1]2

with intensity function λ(x1, x2) = 300(x2
1 + x2

2). Which strategy is more efficient?

(a) First, there is the “direct” method. Sample the number of points N ∼ Poi(
∫
E
λ(x) dx).

Then sample X1, . . . , XN independently from the density f(x) = λ(x)/
∫
E
λ(y) dy (hint: use

rejection sampling).
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(b) Alternatively, there is the “thinning” method. Generate a homogenous Poisson point process
with intensity λ∗ = 600 and thin the points by accepting each point with probability λ(x)/λ∗.

4 Coding (Pretty pictures).

In a Matérn process, we first sample centers C from a homogeneous Poisson process on the unit
square E = [0, 1]2 and then we sample points from a Poisson process on E with intensity function

λ(x) = α
∑

c∈C
1{∥x− c∥ ≤ r}.

Play around with parameters until you get pretty pictures. Is the process attractive or repulsive?
Can you think of any repulsive point processes?

5 Coding (Poisson hyperplane process)

Let Φ = {t1, t2, . . .} be a Poisson point process on R with intensity λ and let {x1,x2, . . .} be
independent random vectors uniformly distributed on the unit circle. Simulate all the hyperplanes
H(xi, ti) = {y ∈ R2 : ⟨y,xi⟩ = ti} that hit the unit circle. How many hyperplanes are there?

6 Math (Thinning works).

The Laplace functional of a d-dimensional point process Φ is defined for nonnegative functions f
by the formula

LΦ[f ] = E
[
exp

(
−
∑

x∈Φ
f(x)

)]
.

(a) Calculate the Laplace functional for a Poisson point process with intensity measure Λ.

(b) For any function p : Rd → [0, 1], a p-thinning of a point process Φ deletes each point x ∈ Φ
with probability p(x). Argue that the p-thinning of a point process is also a point process,
and calculate the intensity measure. You can assume: if two point processes share the same
Laplace functional, they are the same process (in distribution).

7 Math (Circulants).

Consider a Gaussian random field on a 1-d lattice with N sites and periodic boundary conditions.
The covariance matrix takes the form Σi,j = C(|i−j|) for a function C satisfying C(N−x) = C(x),
which means that Σ is a circulant matrix. We know that a circulant matrix has eigenvectors
1/

√
N(1, ωj , . . . , ωNj−j) and eigenvalues λj = C(0) + C(1)ωj + · · · + C(N − 1)ωNj−j , where ω =

exp(2πi/N) is the Nth root of unity. Use this fact to design a slick algorithm for sampling from
the N (0,Σ) distribution. How could you extend the algorithm to 1-d Gaussian random fields with
free boundary conditions, or 2-d Gaussian random fields?
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