1 Choose-your-own-adventure (1-d Ising model).

The Ising model is a spatial process on the 1-d lattice, inspired by ferromagnets in chemistry. There are N spins denoted $\boldsymbol{X}=\left(X_{1}, \ldots, X_{N}\right)$, and each spin is assigned either $X_{i}=-1$ or $X_{i}=+1$. Assuming "free" boundary conditions, the probability mass function for vectors \boldsymbol{X} is

$$
p(\boldsymbol{x})=\frac{1}{Z_{\beta}} \exp \left(\beta \sum_{i=1}^{N-1} x_{i} x_{i+1}\right), \quad Z_{\beta}=\sum_{\boldsymbol{x} \in\{-1,+1\}^{N}} \exp \left(\beta \sum_{i=1}^{N-1} x_{i} x_{i+1}\right)
$$

where $\beta>0$ is the inverse temperature parameter.
(a) There is an exact sampler for the 1-d Ising model. First, define functions $V_{1}\left(x_{1}\right)=1$ and $V_{t+1}\left(x_{t+1}\right)=\sum_{x_{t} \in\{-1,+1\}} V_{t}\left(x_{t}\right) \exp \left(\beta x_{t} x_{t+1}\right)$ for $t=1, \ldots, N-1$ and calculate the partition function $Z_{\beta}=\sum_{x_{N} \in\{-1,+1\}} V_{N}\left(x_{N}\right)$. Next, sample the last spin X_{N} from the distribution $p_{N}\left(x_{N}\right)=V_{N}\left(x_{N}\right) / Z$, and recursively sample each spin X_{t-1} from the distribution

$$
p_{t-1}\left(x_{t-1}\right)=\frac{V_{t-1}\left(x_{t-1}\right) \exp \left(\beta x_{t-1} X_{t}\right)}{\sum_{y_{t-1} \in\{-1,+1\}} V_{t-1}\left(y_{t-1}\right) \exp \left(\beta y_{t-1} X_{t}\right)}
$$

for $t=N, N-1, \ldots, 2$. Try this on a computer, or write down a simple analytic formula.
(b) Use part (a) to calculate the correlation function $C(t)=\mathbb{E}\left[X_{0} X_{t}\right]$. How does the correlation function change as we increase β ?

2 Choose-your-own-adventure (1-d Gaussian random field).

Consider a Gaussian random field on the 1-d lattice. There are N random variables denoted $\boldsymbol{X}=\left(X_{1}, \ldots, X_{N}\right)$, and we assume $\boldsymbol{X} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma})$ has a multivariate Gaussian distribution.
(a) The first sampling method is to calculate a square root decomposition $\boldsymbol{\Sigma}=\boldsymbol{A} \boldsymbol{A}^{*}$ (e.g., by Cholesky decomposition) and set $\boldsymbol{X}=\boldsymbol{A} \boldsymbol{Z}$ where $\boldsymbol{Z}=\left(Z_{1}, \ldots, Z_{N}\right)$ are independent standard Gaussians. Write down or code up how to do this for the moving average process with covariance matrix $\boldsymbol{\Sigma}_{i j}=1 / 10 \max \{\min \{i, j, 10-|i-j|\}, 0\}$.
(b) The second sampling method is to take a square root decomposition of the inverse covariance $\boldsymbol{\Sigma}^{-1}=\boldsymbol{B} \boldsymbol{B}^{*}$ and solve the linear system $\boldsymbol{B} \boldsymbol{X}=\boldsymbol{Z}$, where $\boldsymbol{Z}=\left(Z_{1}, \ldots, Z_{N}\right)$ are independent standard Gaussians. Write down or code up how to do this for the autoregressive process with covariance matrix $\boldsymbol{\Sigma}_{i, j}=(9 / 10)^{|i-j|}$. What differences do you see between the moving average and autoregressive processes?

3 Coding (Poisson point process).

Consider two strategies for sampling from a Poisson point process on the unit square $E=[0,1]^{2}$ with intensity function $\lambda\left(x_{1}, x_{2}\right)=300\left(x_{1}^{2}+x_{2}^{2}\right)$. Which strategy is more efficient?
(a) First, there is the "direct" method. Sample the number of points $N \sim \operatorname{Poi}\left(\int_{E} \lambda(\boldsymbol{x}) d \boldsymbol{x}\right)$. Then sample X_{1}, \ldots, X_{N} independently from the density $f(\boldsymbol{x})=\lambda(\boldsymbol{x}) / \int_{E} \lambda(\boldsymbol{y}) d \boldsymbol{y}$ (hint: use rejection sampling).
(b) Alternatively, there is the "thinning" method. Generate a homogenous Poisson point process with intensity $\lambda^{*}=600$ and thin the points by accepting each point with probability $\lambda(\boldsymbol{x}) / \lambda^{*}$.

4 Coding (Pretty pictures).

In a Matérn process, we first sample centers C from a homogeneous Poisson process on the unit square $E=[0,1]^{2}$ and then we sample points from a Poisson process on E with intensity function

$$
\lambda(\boldsymbol{x})=\alpha \sum_{\boldsymbol{c} \in \mathrm{C}} \mathbb{1}\{\|\boldsymbol{x}-\boldsymbol{c}\| \leq r\}
$$

Play around with parameters until you get pretty pictures. Is the process attractive or repulsive? Can you think of any repulsive point processes?

5 Coding (Poisson hyperplane process)

Let $\Phi=\left\{t_{1}, t_{2}, \ldots\right\}$ be a Poisson point process on \mathbb{R} with intensity λ and let $\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots\right\}$ be independent random vectors uniformly distributed on the unit circle. Simulate all the hyperplanes $H\left(\boldsymbol{x}_{i}, t_{i}\right)=\left\{\boldsymbol{y} \in \mathbb{R}^{2}:\left\langle\boldsymbol{y}, \boldsymbol{x}_{\boldsymbol{i}}\right\rangle=t_{i}\right\}$ that hit the unit circle. How many hyperplanes are there?

6 Math (Thinning works).

The Laplace functional of a d-dimensional point process Φ is defined for nonnegative functions f by the formula

$$
L_{\Phi}[f]=\mathbb{E}\left[\exp \left(-\sum_{\boldsymbol{x} \in \Phi} f(\boldsymbol{x})\right)\right]
$$

(a) Calculate the Laplace functional for a Poisson point process with intensity measure Λ.
(b) For any function $p: \mathbb{R}^{d} \rightarrow[0,1]$, a p-thinning of a point process Φ deletes each point $\boldsymbol{x} \in \Phi$ with probability $p(\boldsymbol{x})$. Argue that the p-thinning of a point process is also a point process, and calculate the intensity measure. You can assume: if two point processes share the same Laplace functional, they are the same process (in distribution).

7 Math (Circulants).

Consider a Gaussian random field on a 1-d lattice with N sites and periodic boundary conditions. The covariance matrix takes the form $\boldsymbol{\Sigma}_{i, j}=C(|i-j|)$ for a function C satisfying $C(N-x)=C(x)$, which means that $\boldsymbol{\Sigma}$ is a circulant matrix. We know that a circulant matrix has eigenvectors $1 / \sqrt{N}\left(1, \omega^{j}, \ldots, \omega^{N j-j}\right)$ and eigenvalues $\lambda_{j}=C(0)+C(1) \omega^{j}+\cdots+C(N-1) \omega^{N j-j}$, where $\omega=$ $\exp (2 \pi i / N)$ is the N th root of unity. Use this fact to design a slick algorithm for sampling from the $\mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma})$ distribution. How could you extend the algorithm to 1-d Gaussian random fields with free boundary conditions, or 2-d Gaussian random fields?

