Agenda
· Definition of point processes in Rd
· How to describe/characterize the distribution of a PP
· Poisson processes (Degn & Simulation)
· Stochastic Geometry Models built from Poisson processes.
· Extra: Non-Poisson Point processes
Paint processes in Rd
Def A subset
$$\varphi \leq Rd$$
 is locally finite if for all
bounded $B \in \mathcal{B} := \mathcal{B}(R^d)$, $\varphi(B) := \#(\varphi \cap B)$ is finite.
N := $\{ \psi \leq Rd : (\varphi \text{ is locally finite}\}$
 $N := \{ \psi \leq Rd : (\varphi \text{ is locally finite}\}$
 $N := \{ \psi \leq Rd : (\varphi \text{ is locally finite}\}$
 $N := \{ \psi \leq Rd : (\varphi \text{ is locally finite}\}$
 $N := \delta - algebra generated by subsets of the form:
 $\{ \psi \in N : (\psi(B) = K_{i}\} \text{ for bounded } B \in B \text{ and}$
 $K \in N \cup \{ \delta \}$.
Def A point process Ξ is a random variable
 $faking values \text{ in } (N, N)$
 $Ex I: Let n \in N \text{ and } X_{i,...,}X_{n}$ be iid random vectors
in \mathbb{R}^{d} with probability density f.
 $\overline{\Phi} = \{ X_{i} \}_{i=1}^{n}$ is a Binomial point process $\overline{\Phi}$ on \mathbb{R}^{d} as
 $\overline{\Phi} = \{ X_{i} \}_{i=1}^{n}$ for vandom vectors $X_{i} \in \mathbb{R}^{d}$ and
 α random variable $N \in N \cup \{ N \}$.$

[Intensity Measure] Def The intensity measure of a point process $\overline{\Phi}$ on \mathbb{R}^d , is the measure Λ on $(\mathbb{R}^d, \mathbb{R})$ defined by: $\Lambda(B) := E [\overline{D}(B)]$ for $B \in \mathbb{R}$. = Expected number of points of I in B Note: Even though I is locally finite almost surely, for bounded $B \in \mathcal{B}$, $P[\Phi(B) < \infty] = 1 \neq E[\Phi(B)] < \infty$ We will later assume N(B) < so V bounded BEB. Def If K has a density λ w.r.t. lebesgue measure, (i.e. $\Lambda(B) = \int_B \pi(x) dx$), then we say $\overline{\Phi}$ has intensity function $\pi(\cdot)$. Def If A has a constant density $\chi > 0$ w.r.t. Lebesgue measure (i.e. $\Lambda(B) = \chi vol(B)$), then $\overline{\Delta}$ is <u>homogenous</u> with intensity χ with intensity X. Excercise: What is the intensity measure of the Binomial point process in example 1? Def The finite dimensional (fidi) distributions of a point process Def are the distributions of the random vectors (I (B,), ..., I (B,)) for new and B,..., Bn (G. Prop2 Let I and I'be point processes. If for all new and pairwise disjont B,,.., Bn GB, $(\overline{\Phi}(B_1), \overline{\mu}, \overline{\Phi}(B_n)) \stackrel{d}{=} (\overline{\Phi}(B_1), \overline{\mu}(B_n),$ then $\overline{\mathbf{D}} \stackrel{e}{=} \overline{\mathbf{D}}^2$. That is, fish distributions characterize the distribution of a point process.

Poisson Processes
Let N be a locally finite measure on
$$\mathbb{R}^{d}$$
, i.e.
 $\Lambda(B) < \omega$ for all bounded $B \in \mathcal{B}$.
Def A point process $\overline{\Sigma}$ on \mathbb{R}^{d} is a Poisson process
with intensity measure Λ if:
(i) For all $B \in \beta$ st. $\Lambda(B) < \omega$, $\overline{\Sigma}(B) \sim Poisson(\Lambda(B))$
(ii) For all $n \in \mathbb{N}$ and pairwise disjoint $B_{1,n}, B_n \in \beta$.
 $\overline{\Sigma}(B_1), \dots, \overline{\Sigma}(B_n) = K_n$ are independent.
That is,
 $\mathbb{P}[\overline{\Sigma}(B_1)=K_{1,n}, \overline{\Sigma}(B_n)=K_n] = \prod_{i=1}^{n} \frac{\Lambda(B_i)}{K_i!} e^{-\Lambda(B_i)}$
Explicitly density f.
Then, $\overline{\Xi} = \sum_{i=1}^{n} \sum_{i=1}^{n} \frac{\Lambda(B_i)}{K_i!} e^{-\Lambda(B_i)}$
Exercise: Prove the claim in example 2 (thint: use
 $\sum_{i=1}^{imulation} \sum_{i=1}^{i} \sum_{i=1}^{n} \sum_{i=1$

(onsider the measurable mapping T: (t,n) → H(n,t) := 2x ∈ Rd: Xx, u7=t3. Then, T(Ê) = 2H(u;,ti)3i=1 is a Poisson process in the space 21d of hyperplanes in Rd with intensity measure $\tilde{\Lambda}(.) = \Lambda S_R S_{24-1} T_{2H(n,t)} \in -3 dota)$

Non-Poisson Point processes

Cox Processes : Poisson processes with a random intensity measure e_{X} : let $\overline{\Phi} = \{X_i\}_{i=1}^N$ be a Poisson process on \mathbb{R}^d Define the random intensity function $\mathcal{N}(x) := \mathcal{V} \geq \mathcal{P}(x - x_i), x \in \mathbb{R}^d$ where p is a probability density on IRd. Let In be the point process such that conditioned on λ , $\overline{\Phi}_{\chi}$ is a Poisson process with intensity function r. Then, Er is called a Poisson cluster process. Ð If $p(x) \propto \sqrt{2} ||x|| \leq R_{f}^{2}$ In the En is called a × * * * Matern cluster process · (ox processes are "attractive"

"Repulsive" point processes
 Some Gibb point processes (often can only approximately sample)
 Determinantal point process
 (exact sampling algorithm)