Lecture 1: How random number generators
(don't) work

ACM 206, April 4, 2023
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Samples inside a circle

Let's generate samples inside a circle.

Fraction 1.000

Figure: A Monte Carlo approach (10 samples)
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Samples inside a circle

Let's generate samples inside a circle.

Fraction 0.840

Figure: A Monte Carlo approach (100 samples)
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Samples inside a circle

Let's generate samples inside a circle.

Fraction 0.804

Figure: A Monte Carlo approach (250 samples)
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Samples inside a circle

Let's generate samples inside a circle.

Fraction 0.774
b ~

Figure: A Monte Carlo approach (1000 samples)
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A simple rejection sampling approach

A simple rejection sampling approach

1. For t=1,2,..., T, draw a random vector X* = (X{, X) where
X, X5 ~ Unif(=1,1).

2. Accept if

(XD +(X3)> < 1.

.
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10-dimensional hypersphere

Let's generate samples inside a 10-dimensional hypersphere.

Fraction 0.000

Figure: A Monte Carlo approach (10 samples)
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10-dimensional hypersphere

Let's generate samples inside a 10-dimensional hypersphere.

Fraction 0.000

Figure: A Monte Carlo approach (100 samples)
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10-dimensional hypersphere

Let's generate samples inside a 10-dimensional hypersphere.

Fraction 0.000

Figure: A Monte Carlo approach (250 samples)
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10-dimensional hypersphere

Let's generate samples inside a 10-dimensional hypersphere.

Fraction 0.002

Figure: A Monte Carlo approach (1000 samples)
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Higher dimensions

Here's a better algorithm for higher dimensions.
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Higher dimensions

Here's a better algorithm for higher dimensions.

Don'’t throw it like this.
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Figure: Unif(—1, 1) distribution



A better algorithm
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Higher dimensions

Here's a better algorithm for higher dimensions.

Don'’t throw it like this. Throw it like this instead.
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Figure: Unif(—1, 1) distribution Figure: N(0,1/(d — 1)) distribution
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Higher dimensions

Here's a better algorithm for higher dimensions.
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Higher dimensions

Here's a better algorithm for higher dimensions.

A faster Monte Carlo approach

1. For t =1,2,..., T, draw a random vector X* = (X{,..., X}), where
Xf,...,XjN./\/’(O,ﬁ).

2. Accept with probability

exp<d;1((X1t)2 RO = 1)>11 (X 4+ (X9 < 1}

v
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10-dimensional hypersphere

Let's generate samples inside a 10-dimensional hypersphere.

Fraction 0.400

Figure: A faster Monte Carlo approach (10 samples)
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10-dimensional hypersphere

Let's generate samples inside a 10-dimensional hypersphere.

Fraction 0.180

Figure: A faster Monte Carlo approach (100 samples)
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10-dimensional hypersphere

Let's generate samples inside a 10-dimensional hypersphere.

Fraction 0.176

Figure: A faster Monte Carlo approach (250 samples)
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10-dimensional hypersphere

Let's generate samples inside a 10-dimensional hypersphere.

Fraction 0.164

Figure: A faster Monte Carlo approach (1000 samples)
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Conclusion

Why is the Gaussian sampler so effective?
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Conclusion

Why is the Gaussian sampler so effective?
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Figure: Each coordinate is quite close to a N (0, ﬁ) distribution.
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Conclusion

Why is the Gaussian sampler so effective?
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Figure: Each coordinate is quite close to a N (0, ﬁ) distribution.

Takeaway message: to speed up Monte Carlo, use everything you know
about the events you're sampling!
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Conclusion

Why is the Gaussian sampler so effective?
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Figure: Each coordinate is quite close to a N (0, ﬁ) distribution.

Takeaway message: to speed up Monte Carlo, use everything you know
about the events you're sampling!

Faster option: There is also a perfect sampler (Barthe et al., 2005):

(21 2)/ (> 22 +5)"?

where Z; are independent Gaussians, S ~ exp(1/2).
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