1 Choose-your-own-adventure (Binomial random variables).

How can we simulate a $\operatorname{Bin}(N, p)$ random variable on a computer? There is a direct method of flipping N coins with probability of success p and counting the number of successes, but this becomes expensive for large N. What is a better strategy for large N ? How well does it work? Try it on a computer or study it mathematically. (Hint: remember the central limit theorem.)

2 Choose-your-own-adventure (Poisson random variables).

How can we simulate a $\operatorname{Pois}(\lambda)$ random variable on a computer? There is a classical characterization of the Poisson distribution, in which we wait at a bus stop and count how many passengers arrive. The interarrival times are independent $\exp (\lambda)$ random variables and the number of passengers at time $t=1$ is a $\operatorname{Pois}(\lambda)$ random variable. Use this characterization to derive a slick sampling algorithm. (This is how Matlab and Python do it for $\lambda \leq 10$ or $\lambda \leq 15$).

3 Choose-your-own-adventure (Gaussian tails).

We can use rejection sampling to obtain samples from a conditional Gaussian distribution $Z \mid Z \geq C$ where $Z \sim \mathcal{N}(0,1)$ and $C=10$ or even larger.
(a) One idea is to use a $\mathcal{N}(0,1)$ trial distribution. What is the resulting algorithm? What is the expected wait time to acceptance (try it on a computer or derive it mathematically)?
(b) A different idea is to use a $\mathcal{N}(C, 1)$ trial distribution. What is the resulting algorithm? What is the expected wait time to acceptance (try it on a computer or derive it mathematically)?
(Hint: for nice math results, use Mills' ratio $\frac{C}{C^{2}+1} \leq \frac{\mathbb{P}\{Z>C\}}{\phi(C)} \leq \frac{1}{C}$ for $C>0$ and $\phi(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}$).

4 Coding (Digits of π).

In Matlab or Python, we can evaluate π with 16 digits of accuracy, but what if we want 100 digits?
(a) Write a Monte Carlo method to calculate π. How many digits of accuracy can we get?
(b) As an alternative for calculating π, use the formula $\pi=4 \arctan (1)$ and the Taylor series expansion of $\arctan x$. Better yet, use the formula $\pi=4 \arctan (1 / 2)+4 \arctan (1 / 3)$ (Euler, 1737) and the Taylor series expansion for $\arctan x$. How many digits of accuracy can we get?

5 Coding (Repulsive eigenvalues).

Let $\boldsymbol{G} \in \mathbb{R}^{N \times N}$ be a square matrix with independent $\mathcal{N}(0,1)$ entries. Then, $\boldsymbol{X}=\frac{1}{N} \boldsymbol{G} \boldsymbol{G}^{*}$ is a positive definite Wishart matrix.
(a) Simulate a Wishart matrix in high dimensions and show the histogram of eigenvalues converges to the Marchenko-Pastur distribution with density $f(x)=(4 / x-1)^{1 / 2} /(2 \pi)$ for $0<x<4$.
(b) Write an exact Monte Carlo sampler for the Marchenko-Pastur distribution. (Hint: The square of a $\operatorname{Unif}(0,1)$ random variable has density $f(x)=\frac{1}{2} x^{-1 / 2}$ for $0<x<1$. Use rescaling and rejection sampling.)
(c) Show that the Wishart matrix eigenvalues are more repulsive than independent MarchenkoPastur random variables. How do you explain the repulsion, mathematically or intuitively?

6 Math (From one to many).

Prove that given just ONE $\operatorname{Unif}(0,1)$ random variable, we can generate INFINITELY MANY independent $\operatorname{Unif}(0,1)$ random variables. Question: can we make this work on a computer?

7 Math (Quantile problem).

For a random variable $X \in \mathbb{R}$, let $F(x)=\mathbb{P}\{X \leq x\}$ be the cumulative distribution function (cdf) and let $Q(p)=\inf \{x \in \mathbb{R}: F(x) \geq p\}$ be the quantile function.
(a) If F is continuous and strictly increasing, prove that Q is the inverse of F, i.e., $Q(F(x))=x$.
(b) If U is a $\operatorname{Unif}(0,1)$ random variable, prove that $Q(U)$ is a random variable with cdf F.

8 Math (Importance beats rejection).

We want to simulate from a pdf f and evaluate a statistic $\mu_{h}=\int f(x) h(x) d x$, but we can only simulate from a pdf g. First, we fix a number $M \geq \sup _{x} f(x) / g(x)$. Then, we draw independent samples X_{1}, \ldots, X_{N} with pdf g, we calculate $w_{i}=f\left(X_{i}\right) /\left(g\left(X_{i}\right) M\right)$ for $1 \leq i \leq N$, and we draw independent random variables $U_{1}, \ldots, U_{n} \sim \operatorname{Unif}(0,1)$. Define the rejection sampling estimator

$$
\hat{h}_{\mathrm{rej}}=\frac{\mathbb{1}\left\{U_{1} \leq w_{1}\right\} h\left(X_{1}\right)+\cdots+\mathbb{1}\left\{U_{N} \leq w_{N}\right\} h\left(X_{N}\right)}{\mathbb{1}\left\{U_{1} \leq w_{1}\right\}+\cdots+\mathbb{1}\left\{U_{N} \leq w_{N}\right\}}
$$

and the importance sampling estimator

$$
\hat{h}_{\mathrm{imp}}=\frac{w_{1} h\left(X_{1}\right)+\cdots+w_{N} h\left(X_{N}\right)}{w_{1}+\cdots+w_{N}}
$$

As $N \rightarrow \infty$, prove the central limit theorems

$$
\sqrt{N}\left(\hat{h}_{\mathrm{rej}}-\mu_{h}\right) \xrightarrow{\mathcal{D}} \mathcal{N}\left(0, V_{\mathrm{rej}}^{2}\right), \quad \sqrt{N}\left(\hat{h}_{\mathrm{imp}}-\mu_{h}\right) \xrightarrow{\mathcal{D}} \mathcal{N}\left(0, V_{\mathrm{imp}}^{2}\right),
$$

where

$$
V_{\mathrm{rej}}^{2}=M \int f(x)\left|h(x)-\mu_{h}\right|^{2} d x \geq V_{\mathrm{imp}}^{2}=\int \frac{f(x)^{2}}{g(x)}\left|h(x)-\mu_{h}\right|^{2}
$$

Partial solution (avoiding the delta method). Set $h^{\prime}(x)=h(x)-\mu_{h}$ and use the central limit theorem for averages of independent random variables to show

$$
\frac{1}{\sqrt{N}} \sum_{i=1}^{N} \mathbb{1}\left\{U_{i} \leq w_{i}\right\} h^{\prime}\left(X_{i}\right) \xrightarrow{\mathcal{D}} \mathcal{N}\left(0, \frac{1}{M} \int f(x)\left|h^{\prime}(x)\right|^{2} d x\right)
$$

and

$$
\frac{1}{\sqrt{N}}\left(\sum_{i=1}^{N} \mathbb{1}\left\{U_{i} \leq w_{i}\right\}-\frac{1}{M}\right)=\mathcal{O}_{p}(1)
$$

as $N \rightarrow \infty$. Next, recall that a quotient n / d has Taylor series expansion

$$
\frac{n}{d}=\frac{n}{d_{0}}-\frac{n_{0}}{d_{0}} \cdot \frac{d-d_{0}}{d_{0}}+\mathcal{O}\left(n-n_{0}\right)^{2}+\mathcal{O}\left(d-d_{0}\right)^{2}
$$

Setting $n_{0}=0, d_{0}=1 / M$,

$$
n=\frac{1}{N} \sum_{i=1}^{N} \mathbb{1}\left\{U_{i} \leq w_{i}\right\} h^{\prime}\left(X_{i}\right), \quad \text { and } \quad d=\frac{1}{N} \sum_{i=1}^{N} \mathbb{1}\left\{U_{i} \leq w_{i}\right\}
$$

we get

$$
\begin{aligned}
\hat{h}_{\mathrm{rej}}-\mu_{h} & =\left(\frac{1}{N} \sum_{i=1}^{N} \mathbb{1}\left\{U_{i} \leq w_{i}\right\} h^{\prime}\left(X_{i}\right)\right) /\left(\frac{1}{N} \sum_{i=1}^{N} \mathbb{1}\left\{U_{i} \leq w_{i}\right\}\right) \\
& =\frac{M}{N} \sum_{i=1}^{N} \mathbb{1}\left\{U_{i} \leq w_{i}\right\} h^{\prime}\left(X_{i}\right)+\mathcal{O}_{p}\left(\frac{1}{N}\right)
\end{aligned}
$$

and by an application of Slutsky's theorem

$$
\sqrt{N}\left(\hat{h}_{\mathrm{rej}}-\mu_{h}\right) \xrightarrow{\mathcal{D}} \mathcal{N}\left(0, \frac{1}{M} \int f(x)\left|h^{\prime}(x)\right|^{2} d x\right) .
$$

