
ACM 206 Problem Set 1 April 6, 2023

1 Choose-your-own-adventure (Binomial random variables).

How can we simulate a Bin(N, p) random variable on a computer? There is a direct method
of flipping N coins with probability of success p and counting the number of successes, but this
becomes expensive for large N . What is a better strategy for large N? How well does it work? Try
it on a computer or study it mathematically. (Hint: remember the central limit theorem.)

2 Choose-your-own-adventure (Poisson random variables).

How can we simulate a Pois(λ) random variable on a computer? There is a classical characterization
of the Poisson distribution, in which we wait at a bus stop and count how many passengers arrive.
The interarrival times are independent exp(λ) random variables and the number of passengers at
time t = 1 is a Pois(λ) random variable. Use this characterization to derive a slick sampling
algorithm. (This is how Matlab and Python do it for λ ≤ 10 or λ ≤ 15).

3 Choose-your-own-adventure (Gaussian tails).

We can use rejection sampling to obtain samples from a conditional Gaussian distribution Z|Z ≥ C
where Z ∼ N (0, 1) and C = 10 or even larger.

(a) One idea is to use a N (0, 1) trial distribution. What is the resulting algorithm? What is the
expected wait time to acceptance (try it on a computer or derive it mathematically)?

(b) A different idea is to use a N (C, 1) trial distribution. What is the resulting algorithm? What
is the expected wait time to acceptance (try it on a computer or derive it mathematically)?

(Hint: for nice math results, use Mills’ ratio C
C2+1 ≤ P{Z>C}

ϕ(C) ≤ 1
C for C > 0 and ϕ(x) = 1√

2π
e−x2/2).

4 Coding (Digits of π).

In Matlab or Python, we can evaluate π with 16 digits of accuracy, but what if we want 100 digits?

(a) Write a Monte Carlo method to calculate π. How many digits of accuracy can we get?

(b) As an alternative for calculating π, use the formula π = 4arctan(1) and the Taylor series
expansion of arctanx. Better yet, use the formula π = 4arctan(1/2) + 4 arctan(1/3) (Euler,
1737) and the Taylor series expansion for arctanx. How many digits of accuracy can we get?

5 Coding (Repulsive eigenvalues).

Let G ∈ RN×N be a square matrix with independent N (0, 1) entries. Then, X = 1
NGG∗ is a

positive definite Wishart matrix.

(a) Simulate a Wishart matrix in high dimensions and show the histogram of eigenvalues converges
to the Marchenko-Pastur distribution with density f(x) = (4/x− 1)1/2/(2π) for 0 < x < 4.
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(b) Write an exact Monte Carlo sampler for the Marchenko-Pastur distribution. (Hint: The
square of a Unif(0, 1) random variable has density f(x) = 1

2x
−1/2 for 0 < x < 1. Use rescaling

and rejection sampling.)

(c) Show that the Wishart matrix eigenvalues are more repulsive than independent Marchenko-
Pastur random variables. How do you explain the repulsion, mathematically or intuitively?

6 Math (From one to many).

Prove that given just ONE Unif(0, 1) random variable, we can generate INFINITELY MANY
independent Unif(0, 1) random variables. Question: can we make this work on a computer?

7 Math (Quantile problem).

For a random variable X ∈ R, let F (x) = P{X ≤ x} be the cumulative distribution function (cdf)
and let Q(p) = inf{x ∈ R : F (x) ≥ p} be the quantile function.

(a) If F is continuous and strictly increasing, prove that Q is the inverse of F , i.e., Q(F (x)) = x.

(b) If U is a Unif(0, 1) random variable, prove that Q(U) is a random variable with cdf F .

8 Math (Importance beats rejection).

We want to simulate from a pdf f and evaluate a statistic µh =
∫
f(x)h(x) dx, but we can only

simulate from a pdf g. First, we fix a number M ≥ supx f(x)/g(x). Then, we draw independent
samples X1, . . . , XN with pdf g, we calculate wi = f(Xi)/(g(Xi)M) for 1 ≤ i ≤ N , and we draw
independent random variables U1, . . . , Un ∼ Unif(0, 1). Define the rejection sampling estimator

ĥrej =
1{U1 ≤ w1}h(X1) + · · ·+ 1{UN ≤ wN}h(XN )

1{U1 ≤ w1}+ · · ·+ 1{UN ≤ wN}
and the importance sampling estimator

ĥimp =
w1h(X1) + · · ·+ wNh(XN )

w1 + · · ·+ wN
.

As N → ∞, prove the central limit theorems
√
N
(
ĥrej − µh

) D→ N (0, V 2
rej),

√
N
(
ĥimp − µh

) D→ N (0, V 2
imp),

where

V 2
rej = M

∫
f(x)|h(x)− µh|2 dx ≥ V 2

imp =

∫
f(x)2

g(x)
|h(x)− µh|2.

Partial solution (avoiding the delta method). Set h′(x) = h(x)−µh and use the central limit
theorem for averages of independent random variables to show

1√
N

N∑
i=1

1{Ui ≤ wi}h′(Xi)
D→ N

(
0,

1

M

∫
f(x)|h′(x)|2 dx

)
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and

1√
N

( N∑
i=1

1{Ui ≤ wi} −
1

M

)
= Op(1)

as N → ∞. Next, recall that a quotient n/d has Taylor series expansion

n

d
=

n

d0
− n0

d0
· d− d0

d0
+O(n− n0)

2 +O(d− d0)
2

Setting n0 = 0, d0 = 1/M ,

n =
1

N

N∑
i=1

1{Ui ≤ wi}h′(Xi), and d =
1

N

N∑
i=1

1{Ui ≤ wi},

we get

ĥrej − µh =

(
1

N

N∑
i=1

1{Ui ≤ wi}h′(Xi)

)
/

(
1

N

N∑
i=1

1{Ui ≤ wi}
)

=
M

N

N∑
i=1

1{Ui ≤ wi}h′(Xi) +Op

(
1

N

)
and by an application of Slutsky’s theorem

√
N
(
ĥrej − µh

) D→ N
(
0,

1

M

∫
f(x)|h′(x)|2 dx

)
.
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