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Summary. Splitting and killing is a flexible approach to Monte Carlo sampling that is popular in chemistry and geophysics. While
splitting and killing can lead to high-accuracy estimates, it is difficult to gauge the quality of the estimates published in research papers
because error bars are frequently not provided. Many researchers are unaware of the existence of variance estimators for splitting and
killing schemes. Additionally, the variance estimators that have been proposed are not sufficiently well understood either theoretically
or empirically. In response to this critical gap in understanding, we review the variance estimators that have been proposed, establish
theoretical properties for these estimators, and present numerical numerical tests evaluating their quality.

Background

The idea of splitting and killing was first envisioned by Ulam and Von Neumann in the late 1940s [1], and it has become
increasingly popular over the past decades. Today, splitting and killing schemes include forward flux sampling, which is
used in chemistry to compute reaction rates [2], and diffusion Monte Carlo, which is used in geophysics to study extreme
weather and climate events [3]. In a splitting and killing scheme, the motivating idea is to clone (“split”) particles that
move toward a rare event of interest and terminate (“kill”) particles that move away from the event of interest, while
preserving the overall number of particles. There are many variations on this splitting and killing idea, yet they are all
designed to more accurately evaluate rare event statistics.

The algorithm

The splitting and killing approach begins with an initialization step and then iterates over selection and mutation steps:

Initialization. Initialize a stochastic model with a set of states (&}) and weights wj = % for1 <i < N.

1<i<N

Selection. For each state &}, choose a target number of children particles 7} so that 7} > 0 and Zf\;l T} = N. Use
a resampling algorithm [4] to round each number T} to a nonnegative integer so that E [Ng] =T} and

SN | Nj = N. Replace the weighted ensemble (w?, &) with a new ensemble (uﬂ/, é§>

1<isN 1<i<N

where each particle & is represented by N/ children particles éi , all with weights uzf / th .

Mutation. Run the stochastic model from each state £/ to a new state £ ; and set i, =} for 1 <i < N.
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Figure 1: Splitting and killing is used to sample rare, high positions of the & coordinate. 5
White circles indicate that samples are killed, while black circles indicate that samples =

are preserved and possibly split. § 1
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Estimates and error bars

Estimates
For any Markov process X, the sg)\}itting and killing approach can be used to produce unbiased estimates of expectations

E[f (Xr)] using the estimator >_;_, wh. f (&%) [4].
Variance estimators

Two variance estimators have been proposed for splitting and killing schemes. The ancestral history estimator, proposed
in [6], takes the form

N
Var Zw%f (f%)} ~ N EmpVar Z wh f (5%) "
i=1 1N |
, 4 2
Here, EmpVar, ¢;cy [¢'] = & 0L, |Jﬂ|2 _ ‘% SN 2| denotes the empirical variance of data points z', ..., 2,

while anc (5%) denotes the index of the original ancestor of 5% attime ¢ = 0. The ancestral history estimator is motivated

by assuming quantities Zam( &)= w% f (5%) are uncorrelated and applying a sum of squares variance decomposition.
)=
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The importance sampling estimator, which is used for the importance sampling method for Monte Carlo sampling, takes
the form
N
Var Z whf (&) | ~ N EmpVar [wi f (£7)] (2)

- 1<i<N
=1

The importance sampling estimator is motivated by assuming quantities w?- f (fép) are uncorrelated and applying a sum
of squares variance decomposition.

Theoretical results

The ancestral history estimator has been shown to converge as N — oo if the numbers N are uncorrelated [6]. However,
in most applications of splitting and killing, the numbers NN} are negatively correlated, so our theoretical analysis shows
the ancestral history estimator is biased too high and converges to a number higher than the true variance.

In contrast, the importance sampling estimator is biased too low and converges to a number lower than the true variance
if we assume that 7} is proportional to w} E [ f(Xp)| Xy = §§] We expect but cannot prove the importance sampling
estimator is biased too low in most situations even without this assumption.

Numerical results

In two test problems we apply splitting and killing to an AR(1) process X; = aX;_1 + Z;, where Xy = 0 and Z;, ~
N (0,2) are independent Gaussian increments. In the first test we set & = .9, while in the second test we set & = .1.
In both tests, we apply splitting and killing at times ¢t = 1,...,9 with targets T} proportional to w; exp (5;) We use
N = 1000 particles, and we examine the relative variance when calculating E [exp (X})] for T =0, ..., 10.

In both tests, the ancestral history estimator is biased too high. The importance sampling estimator is biased very low
in the first test because it does not account for the long time correlations in the dynamics, but it is more accurate in the
second test due to the shorter time correlations.
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Figure 2: First test. The ancestral history estimator is biased Figure 3: Second test. The ancestral history estimator is bi-
slightly too high while the importance sampling estimator is ased far too high while the importance sampling estimator is
biased far too low. close to the true variance.

Conclusions

From our theoretical and numerical results, we recommend using the ancestral history estimator as an upper bound on the
variance and the importance sampling estimator as an approximate lower bound on the variance. We anticipate that these
variance estimators will prove useful for uncertainty quantification of splitting and killing estimates in the future.
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